Step |
Hyp |
Ref |
Expression |
1 |
|
2cnd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> 2 e. CC ) |
2 |
|
simprr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> q e. NN ) |
3 |
2
|
nncnd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> q e. CC ) |
4 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
5 |
4
|
adantr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> N e. NN ) |
6 |
5
|
nnnn0d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> N e. NN0 ) |
7 |
3 6
|
expcld |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( q ^ N ) e. CC ) |
8 |
2
|
nnne0d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> q =/= 0 ) |
9 |
5
|
nnzd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> N e. ZZ ) |
10 |
3 8 9
|
expne0d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( q ^ N ) =/= 0 ) |
11 |
1 7 10
|
divcan4d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( 2 x. ( q ^ N ) ) / ( q ^ N ) ) = 2 ) |
12 |
7
|
2timesd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( 2 x. ( q ^ N ) ) = ( ( q ^ N ) + ( q ^ N ) ) ) |
13 |
|
simpl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> N e. ( ZZ>= ` 3 ) ) |
14 |
|
simprl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> p e. NN ) |
15 |
|
ax-flt |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( q e. NN /\ q e. NN /\ p e. NN ) ) -> ( ( q ^ N ) + ( q ^ N ) ) =/= ( p ^ N ) ) |
16 |
13 2 2 14 15
|
syl13anc |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( q ^ N ) + ( q ^ N ) ) =/= ( p ^ N ) ) |
17 |
12 16
|
eqnetrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( 2 x. ( q ^ N ) ) =/= ( p ^ N ) ) |
18 |
1 7
|
mulcld |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( 2 x. ( q ^ N ) ) e. CC ) |
19 |
14
|
nncnd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> p e. CC ) |
20 |
19 6
|
expcld |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( p ^ N ) e. CC ) |
21 |
|
div11 |
|- ( ( ( 2 x. ( q ^ N ) ) e. CC /\ ( p ^ N ) e. CC /\ ( ( q ^ N ) e. CC /\ ( q ^ N ) =/= 0 ) ) -> ( ( ( 2 x. ( q ^ N ) ) / ( q ^ N ) ) = ( ( p ^ N ) / ( q ^ N ) ) <-> ( 2 x. ( q ^ N ) ) = ( p ^ N ) ) ) |
22 |
18 20 7 10 21
|
syl112anc |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( ( 2 x. ( q ^ N ) ) / ( q ^ N ) ) = ( ( p ^ N ) / ( q ^ N ) ) <-> ( 2 x. ( q ^ N ) ) = ( p ^ N ) ) ) |
23 |
22
|
necon3bid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( ( 2 x. ( q ^ N ) ) / ( q ^ N ) ) =/= ( ( p ^ N ) / ( q ^ N ) ) <-> ( 2 x. ( q ^ N ) ) =/= ( p ^ N ) ) ) |
24 |
17 23
|
mpbird |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( 2 x. ( q ^ N ) ) / ( q ^ N ) ) =/= ( ( p ^ N ) / ( q ^ N ) ) ) |
25 |
11 24
|
eqnetrrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> 2 =/= ( ( p ^ N ) / ( q ^ N ) ) ) |
26 |
19 3 8 6
|
expdivd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( p / q ) ^ N ) = ( ( p ^ N ) / ( q ^ N ) ) ) |
27 |
25 26
|
neeqtrrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> 2 =/= ( ( p / q ) ^ N ) ) |
28 |
19 3 8
|
divcld |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( p / q ) e. CC ) |
29 |
14
|
nnne0d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> p =/= 0 ) |
30 |
19 3 29 8
|
divne0d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( p / q ) =/= 0 ) |
31 |
28 30 9
|
cxpexpzd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( p / q ) ^c N ) = ( ( p / q ) ^ N ) ) |
32 |
27 31
|
neeqtrrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> 2 =/= ( ( p / q ) ^c N ) ) |
33 |
|
2re |
|- 2 e. RR |
34 |
33
|
a1i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> 2 e. RR ) |
35 |
|
0le2 |
|- 0 <_ 2 |
36 |
35
|
a1i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> 0 <_ 2 ) |
37 |
14
|
nnrpd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> p e. RR+ ) |
38 |
2
|
nnrpd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> q e. RR+ ) |
39 |
37 38
|
rpdivcld |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( p / q ) e. RR+ ) |
40 |
39
|
rpred |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( p / q ) e. RR ) |
41 |
39
|
rpge0d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> 0 <_ ( p / q ) ) |
42 |
5
|
nnred |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> N e. RR ) |
43 |
40 41 42
|
recxpcld |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( p / q ) ^c N ) e. RR ) |
44 |
40 41 42
|
cxpge0d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> 0 <_ ( ( p / q ) ^c N ) ) |
45 |
5
|
nnrpd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> N e. RR+ ) |
46 |
45
|
rpreccld |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( 1 / N ) e. RR+ ) |
47 |
34 36 43 44 46
|
recxpf1lem |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( 2 = ( ( p / q ) ^c N ) <-> ( 2 ^c ( 1 / N ) ) = ( ( ( p / q ) ^c N ) ^c ( 1 / N ) ) ) ) |
48 |
47
|
necon3bid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( 2 =/= ( ( p / q ) ^c N ) <-> ( 2 ^c ( 1 / N ) ) =/= ( ( ( p / q ) ^c N ) ^c ( 1 / N ) ) ) ) |
49 |
32 48
|
mpbid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( 2 ^c ( 1 / N ) ) =/= ( ( ( p / q ) ^c N ) ^c ( 1 / N ) ) ) |
50 |
5
|
nnrecred |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( 1 / N ) e. RR ) |
51 |
50
|
recnd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( 1 / N ) e. CC ) |
52 |
28 51
|
cxpcld |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( p / q ) ^c ( 1 / N ) ) e. CC ) |
53 |
28 30 51
|
cxpne0d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( p / q ) ^c ( 1 / N ) ) =/= 0 ) |
54 |
52 53 9
|
cxpexpzd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( ( p / q ) ^c ( 1 / N ) ) ^c N ) = ( ( ( p / q ) ^c ( 1 / N ) ) ^ N ) ) |
55 |
|
cxpcom |
|- ( ( ( p / q ) e. RR+ /\ ( 1 / N ) e. RR /\ N e. RR ) -> ( ( ( p / q ) ^c ( 1 / N ) ) ^c N ) = ( ( ( p / q ) ^c N ) ^c ( 1 / N ) ) ) |
56 |
39 50 42 55
|
syl3anc |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( ( p / q ) ^c ( 1 / N ) ) ^c N ) = ( ( ( p / q ) ^c N ) ^c ( 1 / N ) ) ) |
57 |
|
cxproot |
|- ( ( ( p / q ) e. CC /\ N e. NN ) -> ( ( ( p / q ) ^c ( 1 / N ) ) ^ N ) = ( p / q ) ) |
58 |
28 5 57
|
syl2anc |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( ( p / q ) ^c ( 1 / N ) ) ^ N ) = ( p / q ) ) |
59 |
54 56 58
|
3eqtr3d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( ( p / q ) ^c N ) ^c ( 1 / N ) ) = ( p / q ) ) |
60 |
49 59
|
neeqtrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( 2 ^c ( 1 / N ) ) =/= ( p / q ) ) |
61 |
60
|
neneqd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> -. ( 2 ^c ( 1 / N ) ) = ( p / q ) ) |
62 |
61
|
ralrimivva |
|- ( N e. ( ZZ>= ` 3 ) -> A. p e. NN A. q e. NN -. ( 2 ^c ( 1 / N ) ) = ( p / q ) ) |
63 |
|
ralnex2 |
|- ( A. p e. NN A. q e. NN -. ( 2 ^c ( 1 / N ) ) = ( p / q ) <-> -. E. p e. NN E. q e. NN ( 2 ^c ( 1 / N ) ) = ( p / q ) ) |
64 |
62 63
|
sylib |
|- ( N e. ( ZZ>= ` 3 ) -> -. E. p e. NN E. q e. NN ( 2 ^c ( 1 / N ) ) = ( p / q ) ) |
65 |
|
2rp |
|- 2 e. RR+ |
66 |
65
|
a1i |
|- ( N e. ( ZZ>= ` 3 ) -> 2 e. RR+ ) |
67 |
4
|
nnrecred |
|- ( N e. ( ZZ>= ` 3 ) -> ( 1 / N ) e. RR ) |
68 |
66 67
|
cxpgt0d |
|- ( N e. ( ZZ>= ` 3 ) -> 0 < ( 2 ^c ( 1 / N ) ) ) |
69 |
68
|
biantrud |
|- ( N e. ( ZZ>= ` 3 ) -> ( ( 2 ^c ( 1 / N ) ) e. QQ <-> ( ( 2 ^c ( 1 / N ) ) e. QQ /\ 0 < ( 2 ^c ( 1 / N ) ) ) ) ) |
70 |
|
elpqb |
|- ( ( ( 2 ^c ( 1 / N ) ) e. QQ /\ 0 < ( 2 ^c ( 1 / N ) ) ) <-> E. p e. NN E. q e. NN ( 2 ^c ( 1 / N ) ) = ( p / q ) ) |
71 |
69 70
|
bitrdi |
|- ( N e. ( ZZ>= ` 3 ) -> ( ( 2 ^c ( 1 / N ) ) e. QQ <-> E. p e. NN E. q e. NN ( 2 ^c ( 1 / N ) ) = ( p / q ) ) ) |
72 |
64 71
|
mtbird |
|- ( N e. ( ZZ>= ` 3 ) -> -. ( 2 ^c ( 1 / N ) ) e. QQ ) |