| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2cnd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> 2 e. CC ) | 
						
							| 2 |  | simprr |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> q e. NN ) | 
						
							| 3 | 2 | nncnd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> q e. CC ) | 
						
							| 4 |  | eluzge3nn |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. NN ) | 
						
							| 5 | 4 | adantr |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> N e. NN ) | 
						
							| 6 | 5 | nnnn0d |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> N e. NN0 ) | 
						
							| 7 | 3 6 | expcld |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( q ^ N ) e. CC ) | 
						
							| 8 | 2 | nnne0d |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> q =/= 0 ) | 
						
							| 9 | 5 | nnzd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> N e. ZZ ) | 
						
							| 10 | 3 8 9 | expne0d |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( q ^ N ) =/= 0 ) | 
						
							| 11 | 1 7 10 | divcan4d |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( 2 x. ( q ^ N ) ) / ( q ^ N ) ) = 2 ) | 
						
							| 12 | 7 | 2timesd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( 2 x. ( q ^ N ) ) = ( ( q ^ N ) + ( q ^ N ) ) ) | 
						
							| 13 |  | simpl |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> N e. ( ZZ>= ` 3 ) ) | 
						
							| 14 |  | simprl |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> p e. NN ) | 
						
							| 15 |  | ax-flt |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( q e. NN /\ q e. NN /\ p e. NN ) ) -> ( ( q ^ N ) + ( q ^ N ) ) =/= ( p ^ N ) ) | 
						
							| 16 | 13 2 2 14 15 | syl13anc |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( q ^ N ) + ( q ^ N ) ) =/= ( p ^ N ) ) | 
						
							| 17 | 12 16 | eqnetrd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( 2 x. ( q ^ N ) ) =/= ( p ^ N ) ) | 
						
							| 18 | 1 7 | mulcld |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( 2 x. ( q ^ N ) ) e. CC ) | 
						
							| 19 | 14 | nncnd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> p e. CC ) | 
						
							| 20 | 19 6 | expcld |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( p ^ N ) e. CC ) | 
						
							| 21 |  | div11 |  |-  ( ( ( 2 x. ( q ^ N ) ) e. CC /\ ( p ^ N ) e. CC /\ ( ( q ^ N ) e. CC /\ ( q ^ N ) =/= 0 ) ) -> ( ( ( 2 x. ( q ^ N ) ) / ( q ^ N ) ) = ( ( p ^ N ) / ( q ^ N ) ) <-> ( 2 x. ( q ^ N ) ) = ( p ^ N ) ) ) | 
						
							| 22 | 18 20 7 10 21 | syl112anc |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( ( 2 x. ( q ^ N ) ) / ( q ^ N ) ) = ( ( p ^ N ) / ( q ^ N ) ) <-> ( 2 x. ( q ^ N ) ) = ( p ^ N ) ) ) | 
						
							| 23 | 22 | necon3bid |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( ( 2 x. ( q ^ N ) ) / ( q ^ N ) ) =/= ( ( p ^ N ) / ( q ^ N ) ) <-> ( 2 x. ( q ^ N ) ) =/= ( p ^ N ) ) ) | 
						
							| 24 | 17 23 | mpbird |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( 2 x. ( q ^ N ) ) / ( q ^ N ) ) =/= ( ( p ^ N ) / ( q ^ N ) ) ) | 
						
							| 25 | 11 24 | eqnetrrd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> 2 =/= ( ( p ^ N ) / ( q ^ N ) ) ) | 
						
							| 26 | 19 3 8 6 | expdivd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( p / q ) ^ N ) = ( ( p ^ N ) / ( q ^ N ) ) ) | 
						
							| 27 | 25 26 | neeqtrrd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> 2 =/= ( ( p / q ) ^ N ) ) | 
						
							| 28 | 19 3 8 | divcld |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( p / q ) e. CC ) | 
						
							| 29 | 14 | nnne0d |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> p =/= 0 ) | 
						
							| 30 | 19 3 29 8 | divne0d |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( p / q ) =/= 0 ) | 
						
							| 31 | 28 30 9 | cxpexpzd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( p / q ) ^c N ) = ( ( p / q ) ^ N ) ) | 
						
							| 32 | 27 31 | neeqtrrd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> 2 =/= ( ( p / q ) ^c N ) ) | 
						
							| 33 |  | 2re |  |-  2 e. RR | 
						
							| 34 | 33 | a1i |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> 2 e. RR ) | 
						
							| 35 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 36 | 35 | a1i |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> 0 <_ 2 ) | 
						
							| 37 | 14 | nnrpd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> p e. RR+ ) | 
						
							| 38 | 2 | nnrpd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> q e. RR+ ) | 
						
							| 39 | 37 38 | rpdivcld |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( p / q ) e. RR+ ) | 
						
							| 40 | 39 | rpred |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( p / q ) e. RR ) | 
						
							| 41 | 39 | rpge0d |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> 0 <_ ( p / q ) ) | 
						
							| 42 | 5 | nnred |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> N e. RR ) | 
						
							| 43 | 40 41 42 | recxpcld |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( p / q ) ^c N ) e. RR ) | 
						
							| 44 | 40 41 42 | cxpge0d |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> 0 <_ ( ( p / q ) ^c N ) ) | 
						
							| 45 | 5 | nnrpd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> N e. RR+ ) | 
						
							| 46 | 45 | rpreccld |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( 1 / N ) e. RR+ ) | 
						
							| 47 | 34 36 43 44 46 | recxpf1lem |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( 2 = ( ( p / q ) ^c N ) <-> ( 2 ^c ( 1 / N ) ) = ( ( ( p / q ) ^c N ) ^c ( 1 / N ) ) ) ) | 
						
							| 48 | 47 | necon3bid |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( 2 =/= ( ( p / q ) ^c N ) <-> ( 2 ^c ( 1 / N ) ) =/= ( ( ( p / q ) ^c N ) ^c ( 1 / N ) ) ) ) | 
						
							| 49 | 32 48 | mpbid |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( 2 ^c ( 1 / N ) ) =/= ( ( ( p / q ) ^c N ) ^c ( 1 / N ) ) ) | 
						
							| 50 | 5 | nnrecred |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( 1 / N ) e. RR ) | 
						
							| 51 | 50 | recnd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( 1 / N ) e. CC ) | 
						
							| 52 | 28 51 | cxpcld |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( p / q ) ^c ( 1 / N ) ) e. CC ) | 
						
							| 53 | 28 30 51 | cxpne0d |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( p / q ) ^c ( 1 / N ) ) =/= 0 ) | 
						
							| 54 | 52 53 9 | cxpexpzd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( ( p / q ) ^c ( 1 / N ) ) ^c N ) = ( ( ( p / q ) ^c ( 1 / N ) ) ^ N ) ) | 
						
							| 55 |  | cxpcom |  |-  ( ( ( p / q ) e. RR+ /\ ( 1 / N ) e. RR /\ N e. RR ) -> ( ( ( p / q ) ^c ( 1 / N ) ) ^c N ) = ( ( ( p / q ) ^c N ) ^c ( 1 / N ) ) ) | 
						
							| 56 | 39 50 42 55 | syl3anc |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( ( p / q ) ^c ( 1 / N ) ) ^c N ) = ( ( ( p / q ) ^c N ) ^c ( 1 / N ) ) ) | 
						
							| 57 |  | cxproot |  |-  ( ( ( p / q ) e. CC /\ N e. NN ) -> ( ( ( p / q ) ^c ( 1 / N ) ) ^ N ) = ( p / q ) ) | 
						
							| 58 | 28 5 57 | syl2anc |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( ( p / q ) ^c ( 1 / N ) ) ^ N ) = ( p / q ) ) | 
						
							| 59 | 54 56 58 | 3eqtr3d |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( ( ( p / q ) ^c N ) ^c ( 1 / N ) ) = ( p / q ) ) | 
						
							| 60 | 49 59 | neeqtrd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> ( 2 ^c ( 1 / N ) ) =/= ( p / q ) ) | 
						
							| 61 | 60 | neneqd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( p e. NN /\ q e. NN ) ) -> -. ( 2 ^c ( 1 / N ) ) = ( p / q ) ) | 
						
							| 62 | 61 | ralrimivva |  |-  ( N e. ( ZZ>= ` 3 ) -> A. p e. NN A. q e. NN -. ( 2 ^c ( 1 / N ) ) = ( p / q ) ) | 
						
							| 63 |  | ralnex2 |  |-  ( A. p e. NN A. q e. NN -. ( 2 ^c ( 1 / N ) ) = ( p / q ) <-> -. E. p e. NN E. q e. NN ( 2 ^c ( 1 / N ) ) = ( p / q ) ) | 
						
							| 64 | 62 63 | sylib |  |-  ( N e. ( ZZ>= ` 3 ) -> -. E. p e. NN E. q e. NN ( 2 ^c ( 1 / N ) ) = ( p / q ) ) | 
						
							| 65 |  | 2rp |  |-  2 e. RR+ | 
						
							| 66 | 65 | a1i |  |-  ( N e. ( ZZ>= ` 3 ) -> 2 e. RR+ ) | 
						
							| 67 | 4 | nnrecred |  |-  ( N e. ( ZZ>= ` 3 ) -> ( 1 / N ) e. RR ) | 
						
							| 68 | 66 67 | cxpgt0d |  |-  ( N e. ( ZZ>= ` 3 ) -> 0 < ( 2 ^c ( 1 / N ) ) ) | 
						
							| 69 | 68 | biantrud |  |-  ( N e. ( ZZ>= ` 3 ) -> ( ( 2 ^c ( 1 / N ) ) e. QQ <-> ( ( 2 ^c ( 1 / N ) ) e. QQ /\ 0 < ( 2 ^c ( 1 / N ) ) ) ) ) | 
						
							| 70 |  | elpqb |  |-  ( ( ( 2 ^c ( 1 / N ) ) e. QQ /\ 0 < ( 2 ^c ( 1 / N ) ) ) <-> E. p e. NN E. q e. NN ( 2 ^c ( 1 / N ) ) = ( p / q ) ) | 
						
							| 71 | 69 70 | bitrdi |  |-  ( N e. ( ZZ>= ` 3 ) -> ( ( 2 ^c ( 1 / N ) ) e. QQ <-> E. p e. NN E. q e. NN ( 2 ^c ( 1 / N ) ) = ( p / q ) ) ) | 
						
							| 72 | 64 71 | mtbird |  |-  ( N e. ( ZZ>= ` 3 ) -> -. ( 2 ^c ( 1 / N ) ) e. QQ ) |