| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2cnd |
|
| 2 |
|
simprr |
|
| 3 |
2
|
nncnd |
|
| 4 |
|
eluzge3nn |
|
| 5 |
4
|
adantr |
|
| 6 |
5
|
nnnn0d |
|
| 7 |
3 6
|
expcld |
|
| 8 |
2
|
nnne0d |
|
| 9 |
5
|
nnzd |
|
| 10 |
3 8 9
|
expne0d |
|
| 11 |
1 7 10
|
divcan4d |
|
| 12 |
7
|
2timesd |
|
| 13 |
|
simpl |
|
| 14 |
|
simprl |
|
| 15 |
|
ax-flt |
|
| 16 |
13 2 2 14 15
|
syl13anc |
|
| 17 |
12 16
|
eqnetrd |
|
| 18 |
1 7
|
mulcld |
|
| 19 |
14
|
nncnd |
|
| 20 |
19 6
|
expcld |
|
| 21 |
|
div11 |
|
| 22 |
18 20 7 10 21
|
syl112anc |
|
| 23 |
22
|
necon3bid |
|
| 24 |
17 23
|
mpbird |
|
| 25 |
11 24
|
eqnetrrd |
|
| 26 |
19 3 8 6
|
expdivd |
|
| 27 |
25 26
|
neeqtrrd |
|
| 28 |
19 3 8
|
divcld |
|
| 29 |
14
|
nnne0d |
|
| 30 |
19 3 29 8
|
divne0d |
|
| 31 |
28 30 9
|
cxpexpzd |
|
| 32 |
27 31
|
neeqtrrd |
|
| 33 |
|
2re |
|
| 34 |
33
|
a1i |
|
| 35 |
|
0le2 |
|
| 36 |
35
|
a1i |
|
| 37 |
14
|
nnrpd |
|
| 38 |
2
|
nnrpd |
|
| 39 |
37 38
|
rpdivcld |
|
| 40 |
39
|
rpred |
|
| 41 |
39
|
rpge0d |
|
| 42 |
5
|
nnred |
|
| 43 |
40 41 42
|
recxpcld |
|
| 44 |
40 41 42
|
cxpge0d |
|
| 45 |
5
|
nnrpd |
|
| 46 |
45
|
rpreccld |
|
| 47 |
34 36 43 44 46
|
recxpf1lem |
|
| 48 |
47
|
necon3bid |
|
| 49 |
32 48
|
mpbid |
|
| 50 |
5
|
nnrecred |
|
| 51 |
50
|
recnd |
|
| 52 |
28 51
|
cxpcld |
|
| 53 |
28 30 51
|
cxpne0d |
|
| 54 |
52 53 9
|
cxpexpzd |
|
| 55 |
|
cxpcom |
|
| 56 |
39 50 42 55
|
syl3anc |
|
| 57 |
|
cxproot |
|
| 58 |
28 5 57
|
syl2anc |
|
| 59 |
54 56 58
|
3eqtr3d |
|
| 60 |
49 59
|
neeqtrd |
|
| 61 |
60
|
neneqd |
|
| 62 |
61
|
ralrimivva |
|
| 63 |
|
ralnex2 |
|
| 64 |
62 63
|
sylib |
|
| 65 |
|
2rp |
|
| 66 |
65
|
a1i |
|
| 67 |
4
|
nnrecred |
|
| 68 |
66 67
|
cxpgt0d |
|
| 69 |
68
|
biantrud |
|
| 70 |
|
elpqb |
|
| 71 |
69 70
|
bitrdi |
|
| 72 |
64 71
|
mtbird |
|