Metamath Proof Explorer


Theorem nrt2irr

Description: The N -th root of 2 is irrational for N greater than 2 . For N = 2 , see sqrt2irr . This short and rather elegant proof has the minor disadvantage that it refers to ax-flt , which is still to be formalized. For a proof not requiring ax-flt , see rtprmirr . (Contributed by Prof. Loof Lirpa, 1-Apr-2025) (Proof modification is discouraged.)

Ref Expression
Assertion nrt2irr N3¬21N

Proof

Step Hyp Ref Expression
1 2cnd N3pq2
2 simprr N3pqq
3 2 nncnd N3pqq
4 eluzge3nn N3N
5 4 adantr N3pqN
6 5 nnnn0d N3pqN0
7 3 6 expcld N3pqqN
8 2 nnne0d N3pqq0
9 5 nnzd N3pqN
10 3 8 9 expne0d N3pqqN0
11 1 7 10 divcan4d N3pq2qNqN=2
12 7 2timesd N3pq2qN=qN+qN
13 simpl N3pqN3
14 simprl N3pqp
15 ax-flt N3qqpqN+qNpN
16 13 2 2 14 15 syl13anc N3pqqN+qNpN
17 12 16 eqnetrd N3pq2qNpN
18 1 7 mulcld N3pq2qN
19 14 nncnd N3pqp
20 19 6 expcld N3pqpN
21 div11 2qNpNqNqN02qNqN=pNqN2qN=pN
22 18 20 7 10 21 syl112anc N3pq2qNqN=pNqN2qN=pN
23 22 necon3bid N3pq2qNqNpNqN2qNpN
24 17 23 mpbird N3pq2qNqNpNqN
25 11 24 eqnetrrd N3pq2pNqN
26 19 3 8 6 expdivd N3pqpqN=pNqN
27 25 26 neeqtrrd N3pq2pqN
28 19 3 8 divcld N3pqpq
29 14 nnne0d N3pqp0
30 19 3 29 8 divne0d N3pqpq0
31 28 30 9 cxpexpzd N3pqpqN=pqN
32 27 31 neeqtrrd N3pq2pqN
33 2re 2
34 33 a1i N3pq2
35 0le2 02
36 35 a1i N3pq02
37 14 nnrpd N3pqp+
38 2 nnrpd N3pqq+
39 37 38 rpdivcld N3pqpq+
40 39 rpred N3pqpq
41 39 rpge0d N3pq0pq
42 5 nnred N3pqN
43 40 41 42 recxpcld N3pqpqN
44 40 41 42 cxpge0d N3pq0pqN
45 5 nnrpd N3pqN+
46 45 rpreccld N3pq1N+
47 34 36 43 44 46 recxpf1lem N3pq2=pqN21N=pqN1N
48 47 necon3bid N3pq2pqN21NpqN1N
49 32 48 mpbid N3pq21NpqN1N
50 5 nnrecred N3pq1N
51 50 recnd N3pq1N
52 28 51 cxpcld N3pqpq1N
53 28 30 51 cxpne0d N3pqpq1N0
54 52 53 9 cxpexpzd N3pqpq1NN=pq1NN
55 cxpcom pq+1NNpq1NN=pqN1N
56 39 50 42 55 syl3anc N3pqpq1NN=pqN1N
57 cxproot pqNpq1NN=pq
58 28 5 57 syl2anc N3pqpq1NN=pq
59 54 56 58 3eqtr3d N3pqpqN1N=pq
60 49 59 neeqtrd N3pq21Npq
61 60 neneqd N3pq¬21N=pq
62 61 ralrimivva N3pq¬21N=pq
63 ralnex2 pq¬21N=pq¬pq21N=pq
64 62 63 sylib N3¬pq21N=pq
65 2rp 2+
66 65 a1i N32+
67 4 nnrecred N31N
68 66 67 cxpgt0d N30<21N
69 68 biantrud N321N21N0<21N
70 elpqb 21N0<21Npq21N=pq
71 69 70 bitrdi N321Npq21N=pq
72 64 71 mtbird N3¬21N