Metamath Proof Explorer


Theorem nrt2irr

Description: The N -th root of 2 is irrational for N greater than 2 . For N = 2 , see sqrt2irr . This short and rather elegant proof has the minor disadvantage that it refers to ax-flt , which is still to be formalized. For a proof not requiring ax-flt , see rtprmirr . (Contributed by Prof. Loof Lirpa, 1-Apr-2025) (Proof modification is discouraged.)

Ref Expression
Assertion nrt2irr N 3 ¬ 2 1 N

Proof

Step Hyp Ref Expression
1 2cnd N 3 p q 2
2 simprr N 3 p q q
3 2 nncnd N 3 p q q
4 eluzge3nn N 3 N
5 4 adantr N 3 p q N
6 5 nnnn0d N 3 p q N 0
7 3 6 expcld N 3 p q q N
8 2 nnne0d N 3 p q q 0
9 5 nnzd N 3 p q N
10 3 8 9 expne0d N 3 p q q N 0
11 1 7 10 divcan4d N 3 p q 2 q N q N = 2
12 7 2timesd N 3 p q 2 q N = q N + q N
13 simpl N 3 p q N 3
14 simprl N 3 p q p
15 ax-flt N 3 q q p q N + q N p N
16 13 2 2 14 15 syl13anc N 3 p q q N + q N p N
17 12 16 eqnetrd N 3 p q 2 q N p N
18 1 7 mulcld N 3 p q 2 q N
19 14 nncnd N 3 p q p
20 19 6 expcld N 3 p q p N
21 div11 2 q N p N q N q N 0 2 q N q N = p N q N 2 q N = p N
22 18 20 7 10 21 syl112anc N 3 p q 2 q N q N = p N q N 2 q N = p N
23 22 necon3bid N 3 p q 2 q N q N p N q N 2 q N p N
24 17 23 mpbird N 3 p q 2 q N q N p N q N
25 11 24 eqnetrrd N 3 p q 2 p N q N
26 19 3 8 6 expdivd N 3 p q p q N = p N q N
27 25 26 neeqtrrd N 3 p q 2 p q N
28 19 3 8 divcld N 3 p q p q
29 14 nnne0d N 3 p q p 0
30 19 3 29 8 divne0d N 3 p q p q 0
31 28 30 9 cxpexpzd N 3 p q p q N = p q N
32 27 31 neeqtrrd N 3 p q 2 p q N
33 2re 2
34 33 a1i N 3 p q 2
35 0le2 0 2
36 35 a1i N 3 p q 0 2
37 14 nnrpd N 3 p q p +
38 2 nnrpd N 3 p q q +
39 37 38 rpdivcld N 3 p q p q +
40 39 rpred N 3 p q p q
41 39 rpge0d N 3 p q 0 p q
42 5 nnred N 3 p q N
43 40 41 42 recxpcld N 3 p q p q N
44 40 41 42 cxpge0d N 3 p q 0 p q N
45 5 nnrpd N 3 p q N +
46 45 rpreccld N 3 p q 1 N +
47 34 36 43 44 46 recxpf1lem N 3 p q 2 = p q N 2 1 N = p q N 1 N
48 47 necon3bid N 3 p q 2 p q N 2 1 N p q N 1 N
49 32 48 mpbid N 3 p q 2 1 N p q N 1 N
50 5 nnrecred N 3 p q 1 N
51 50 recnd N 3 p q 1 N
52 28 51 cxpcld N 3 p q p q 1 N
53 28 30 51 cxpne0d N 3 p q p q 1 N 0
54 52 53 9 cxpexpzd N 3 p q p q 1 N N = p q 1 N N
55 cxpcom p q + 1 N N p q 1 N N = p q N 1 N
56 39 50 42 55 syl3anc N 3 p q p q 1 N N = p q N 1 N
57 cxproot p q N p q 1 N N = p q
58 28 5 57 syl2anc N 3 p q p q 1 N N = p q
59 54 56 58 3eqtr3d N 3 p q p q N 1 N = p q
60 49 59 neeqtrd N 3 p q 2 1 N p q
61 60 neneqd N 3 p q ¬ 2 1 N = p q
62 61 ralrimivva N 3 p q ¬ 2 1 N = p q
63 ralnex2 p q ¬ 2 1 N = p q ¬ p q 2 1 N = p q
64 62 63 sylib N 3 ¬ p q 2 1 N = p q
65 2rp 2 +
66 65 a1i N 3 2 +
67 4 nnrecred N 3 1 N
68 66 67 cxpgt0d N 3 0 < 2 1 N
69 68 biantrud N 3 2 1 N 2 1 N 0 < 2 1 N
70 elpqb 2 1 N 0 < 2 1 N p q 2 1 N = p q
71 69 70 bitrdi N 3 2 1 N p q 2 1 N = p q
72 64 71 mtbird N 3 ¬ 2 1 N