Metamath Proof Explorer


Theorem sqrt2irr

Description: The square root of 2 is irrational. See zsqrtelqelz for a generalization to all non-square integers. The proof's core is proven in sqrt2irrlem , which shows that if A / B = sqrt ( 2 ) , then A and B are even, so A / 2 and B / 2 are smaller representatives, which is absurd. An older version of this proof was included inThe Seventeen Provers of the World compiled by Freek Wiedijk. It is also the first of the "top 100" mathematical theorems whose formalization is tracked by Freek Wiedijk on hisFormalizing 100 Theorems page at http://www.cs.ru.nl/~freek/100/ . (Contributed by NM, 8-Jan-2002) (Proof shortened by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion sqrt2irr 2

Proof

Step Hyp Ref Expression
1 peano2nn yy+1
2 breq2 n=1z<nz<1
3 2 imbi1d n=1z<nx2xzz<1x2xz
4 3 ralbidv n=1zz<nx2xzzz<1x2xz
5 breq2 n=yz<nz<y
6 5 imbi1d n=yz<nx2xzz<yx2xz
7 6 ralbidv n=yzz<nx2xzzz<yx2xz
8 breq2 n=y+1z<nz<y+1
9 8 imbi1d n=y+1z<nx2xzz<y+1x2xz
10 9 ralbidv n=y+1zz<nx2xzzz<y+1x2xz
11 nnnlt1 z¬z<1
12 11 pm2.21d zz<1x2xz
13 12 rgen zz<1x2xz
14 nnrp yy+
15 rphalflt y+y2<y
16 14 15 syl yy2<y
17 breq1 z=y2z<yy2<y
18 oveq2 z=y2xz=xy2
19 18 neeq2d z=y22xz2xy2
20 19 ralbidv z=y2x2xzx2xy2
21 17 20 imbi12d z=y2z<yx2xzy2<yx2xy2
22 21 rspcv y2zz<yx2xzy2<yx2xy2
23 22 com13 y2<yzz<yx2xzy2x2xy2
24 16 23 syl yzz<yx2xzy2x2xy2
25 simpr yz2=zy2=zy
26 zcn zz
27 26 ad2antlr yz2=zyz
28 nncn yy
29 28 ad2antrr yz2=zyy
30 2cnd yz2=zy2
31 nnne0 yy0
32 31 ad2antrr yz2=zyy0
33 2ne0 20
34 33 a1i yz2=zy20
35 27 29 30 32 34 divcan7d yz2=zyz2y2=zy
36 25 35 eqtr4d yz2=zy2=z2y2
37 simplr yz2=zyz
38 simpll yz2=zyy
39 37 38 25 sqrt2irrlem yz2=zyz2y2
40 39 simprd yz2=zyy2
41 39 simpld yz2=zyz2
42 oveq1 x=z2xy2=z2y2
43 42 neeq2d x=z22xy22z2y2
44 43 rspcv z2x2xy22z2y2
45 41 44 syl yz2=zyx2xy22z2y2
46 40 45 embantd yz2=zyy2x2xy22z2y2
47 46 necon2bd yz2=zy2=z2y2¬y2x2xy2
48 36 47 mpd yz2=zy¬y2x2xy2
49 48 ex yz2=zy¬y2x2xy2
50 49 necon2ad yzy2x2xy22zy
51 50 ralrimdva yy2x2xy2z2zy
52 24 51 syld yzz<yx2xzz2zy
53 oveq1 x=zxy=zy
54 53 neeq2d x=z2xy2zy
55 54 cbvralvw x2xyz2zy
56 52 55 imbitrrdi yzz<yx2xzx2xy
57 oveq2 z=yxz=xy
58 57 neeq2d z=y2xz2xy
59 58 ralbidv z=yx2xzx2xy
60 59 ceqsralv yzz=yx2xzx2xy
61 56 60 sylibrd yzz<yx2xzzz=yx2xz
62 61 ancld yzz<yx2xzzz<yx2xzzz=yx2xz
63 nnleltp1 zyzyz<y+1
64 nnre zz
65 nnre yy
66 leloe zyzyz<yz=y
67 64 65 66 syl2an zyzyz<yz=y
68 63 67 bitr3d zyz<y+1z<yz=y
69 68 ancoms yzz<y+1z<yz=y
70 69 imbi1d yzz<y+1x2xzz<yz=yx2xz
71 jaob z<yz=yx2xzz<yx2xzz=yx2xz
72 70 71 bitrdi yzz<y+1x2xzz<yx2xzz=yx2xz
73 72 ralbidva yzz<y+1x2xzzz<yx2xzz=yx2xz
74 r19.26 zz<yx2xzz=yx2xzzz<yx2xzzz=yx2xz
75 73 74 bitrdi yzz<y+1x2xzzz<yx2xzzz=yx2xz
76 62 75 sylibrd yzz<yx2xzzz<y+1x2xz
77 4 7 10 10 13 76 nnind y+1zz<y+1x2xz
78 1 77 syl yzz<y+1x2xz
79 65 ltp1d yy<y+1
80 breq1 z=yz<y+1y<y+1
81 df-ne 2xy¬2=xy
82 58 81 bitrdi z=y2xz¬2=xy
83 82 ralbidv z=yx2xzx¬2=xy
84 ralnex x¬2=xy¬x2=xy
85 83 84 bitrdi z=yx2xz¬x2=xy
86 80 85 imbi12d z=yz<y+1x2xzy<y+1¬x2=xy
87 86 rspcv yzz<y+1x2xzy<y+1¬x2=xy
88 78 79 87 mp2d y¬x2=xy
89 88 nrex ¬yx2=xy
90 elq 2xy2=xy
91 rexcom xy2=xyyx2=xy
92 90 91 bitri 2yx2=xy
93 89 92 mtbir ¬2
94 93 nelir 2