| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sqrt2irrlem.1 |
|
| 2 |
|
sqrt2irrlem.2 |
|
| 3 |
|
sqrt2irrlem.3 |
|
| 4 |
|
2cnd |
|
| 5 |
4
|
sqsqrtd |
|
| 6 |
3
|
oveq1d |
|
| 7 |
5 6
|
eqtr3d |
|
| 8 |
1
|
zcnd |
|
| 9 |
2
|
nncnd |
|
| 10 |
2
|
nnne0d |
|
| 11 |
8 9 10
|
sqdivd |
|
| 12 |
7 11
|
eqtrd |
|
| 13 |
12
|
oveq1d |
|
| 14 |
8
|
sqcld |
|
| 15 |
2
|
nnsqcld |
|
| 16 |
15
|
nncnd |
|
| 17 |
15
|
nnne0d |
|
| 18 |
14 16 17
|
divcan1d |
|
| 19 |
13 18
|
eqtrd |
|
| 20 |
19
|
oveq1d |
|
| 21 |
|
2ne0 |
|
| 22 |
21
|
a1i |
|
| 23 |
16 4 22
|
divcan3d |
|
| 24 |
20 23
|
eqtr3d |
|
| 25 |
24 15
|
eqeltrd |
|
| 26 |
25
|
nnzd |
|
| 27 |
|
zesq |
|
| 28 |
1 27
|
syl |
|
| 29 |
26 28
|
mpbird |
|
| 30 |
4
|
sqvald |
|
| 31 |
30
|
oveq2d |
|
| 32 |
8 4 22
|
sqdivd |
|
| 33 |
14 4 4 22 22
|
divdiv1d |
|
| 34 |
31 32 33
|
3eqtr4d |
|
| 35 |
24
|
oveq1d |
|
| 36 |
34 35
|
eqtrd |
|
| 37 |
|
zsqcl |
|
| 38 |
29 37
|
syl |
|
| 39 |
36 38
|
eqeltrrd |
|
| 40 |
15
|
nnrpd |
|
| 41 |
40
|
rphalfcld |
|
| 42 |
41
|
rpgt0d |
|
| 43 |
|
elnnz |
|
| 44 |
39 42 43
|
sylanbrc |
|
| 45 |
|
nnesq |
|
| 46 |
2 45
|
syl |
|
| 47 |
44 46
|
mpbird |
|
| 48 |
29 47
|
jca |
|