| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sqrt2irrlem.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 2 |
|
sqrt2irrlem.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
| 3 |
|
sqrt2irrlem.3 |
⊢ ( 𝜑 → ( √ ‘ 2 ) = ( 𝐴 / 𝐵 ) ) |
| 4 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 5 |
4
|
sqsqrtd |
⊢ ( 𝜑 → ( ( √ ‘ 2 ) ↑ 2 ) = 2 ) |
| 6 |
3
|
oveq1d |
⊢ ( 𝜑 → ( ( √ ‘ 2 ) ↑ 2 ) = ( ( 𝐴 / 𝐵 ) ↑ 2 ) ) |
| 7 |
5 6
|
eqtr3d |
⊢ ( 𝜑 → 2 = ( ( 𝐴 / 𝐵 ) ↑ 2 ) ) |
| 8 |
1
|
zcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 9 |
2
|
nncnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 10 |
2
|
nnne0d |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
| 11 |
8 9 10
|
sqdivd |
⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) ) |
| 12 |
7 11
|
eqtrd |
⊢ ( 𝜑 → 2 = ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) ) |
| 13 |
12
|
oveq1d |
⊢ ( 𝜑 → ( 2 · ( 𝐵 ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) · ( 𝐵 ↑ 2 ) ) ) |
| 14 |
8
|
sqcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 15 |
2
|
nnsqcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℕ ) |
| 16 |
15
|
nncnd |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 17 |
15
|
nnne0d |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ≠ 0 ) |
| 18 |
14 16 17
|
divcan1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) · ( 𝐵 ↑ 2 ) ) = ( 𝐴 ↑ 2 ) ) |
| 19 |
13 18
|
eqtrd |
⊢ ( 𝜑 → ( 2 · ( 𝐵 ↑ 2 ) ) = ( 𝐴 ↑ 2 ) ) |
| 20 |
19
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 · ( 𝐵 ↑ 2 ) ) / 2 ) = ( ( 𝐴 ↑ 2 ) / 2 ) ) |
| 21 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 22 |
21
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
| 23 |
16 4 22
|
divcan3d |
⊢ ( 𝜑 → ( ( 2 · ( 𝐵 ↑ 2 ) ) / 2 ) = ( 𝐵 ↑ 2 ) ) |
| 24 |
20 23
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) / 2 ) = ( 𝐵 ↑ 2 ) ) |
| 25 |
24 15
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℕ ) |
| 26 |
25
|
nnzd |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℤ ) |
| 27 |
|
zesq |
⊢ ( 𝐴 ∈ ℤ → ( ( 𝐴 / 2 ) ∈ ℤ ↔ ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℤ ) ) |
| 28 |
1 27
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 / 2 ) ∈ ℤ ↔ ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℤ ) ) |
| 29 |
26 28
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 / 2 ) ∈ ℤ ) |
| 30 |
4
|
sqvald |
⊢ ( 𝜑 → ( 2 ↑ 2 ) = ( 2 · 2 ) ) |
| 31 |
30
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) / ( 2 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) / ( 2 · 2 ) ) ) |
| 32 |
8 4 22
|
sqdivd |
⊢ ( 𝜑 → ( ( 𝐴 / 2 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ( 2 ↑ 2 ) ) ) |
| 33 |
14 4 4 22 22
|
divdiv1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) / 2 ) / 2 ) = ( ( 𝐴 ↑ 2 ) / ( 2 · 2 ) ) ) |
| 34 |
31 32 33
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 / 2 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) / 2 ) / 2 ) ) |
| 35 |
24
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) / 2 ) / 2 ) = ( ( 𝐵 ↑ 2 ) / 2 ) ) |
| 36 |
34 35
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 / 2 ) ↑ 2 ) = ( ( 𝐵 ↑ 2 ) / 2 ) ) |
| 37 |
|
zsqcl |
⊢ ( ( 𝐴 / 2 ) ∈ ℤ → ( ( 𝐴 / 2 ) ↑ 2 ) ∈ ℤ ) |
| 38 |
29 37
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 / 2 ) ↑ 2 ) ∈ ℤ ) |
| 39 |
36 38
|
eqeltrrd |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) / 2 ) ∈ ℤ ) |
| 40 |
15
|
nnrpd |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℝ+ ) |
| 41 |
40
|
rphalfcld |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) / 2 ) ∈ ℝ+ ) |
| 42 |
41
|
rpgt0d |
⊢ ( 𝜑 → 0 < ( ( 𝐵 ↑ 2 ) / 2 ) ) |
| 43 |
|
elnnz |
⊢ ( ( ( 𝐵 ↑ 2 ) / 2 ) ∈ ℕ ↔ ( ( ( 𝐵 ↑ 2 ) / 2 ) ∈ ℤ ∧ 0 < ( ( 𝐵 ↑ 2 ) / 2 ) ) ) |
| 44 |
39 42 43
|
sylanbrc |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) / 2 ) ∈ ℕ ) |
| 45 |
|
nnesq |
⊢ ( 𝐵 ∈ ℕ → ( ( 𝐵 / 2 ) ∈ ℕ ↔ ( ( 𝐵 ↑ 2 ) / 2 ) ∈ ℕ ) ) |
| 46 |
2 45
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 / 2 ) ∈ ℕ ↔ ( ( 𝐵 ↑ 2 ) / 2 ) ∈ ℕ ) ) |
| 47 |
44 46
|
mpbird |
⊢ ( 𝜑 → ( 𝐵 / 2 ) ∈ ℕ ) |
| 48 |
29 47
|
jca |
⊢ ( 𝜑 → ( ( 𝐴 / 2 ) ∈ ℤ ∧ ( 𝐵 / 2 ) ∈ ℕ ) ) |