| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2nn |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℕ ) |
| 2 |
|
breq2 |
⊢ ( 𝑛 = 1 → ( 𝑧 < 𝑛 ↔ 𝑧 < 1 ) ) |
| 3 |
2
|
imbi1d |
⊢ ( 𝑛 = 1 → ( ( 𝑧 < 𝑛 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( 𝑧 < 1 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
| 4 |
3
|
ralbidv |
⊢ ( 𝑛 = 1 → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑛 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ∀ 𝑧 ∈ ℕ ( 𝑧 < 1 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
| 5 |
|
breq2 |
⊢ ( 𝑛 = 𝑦 → ( 𝑧 < 𝑛 ↔ 𝑧 < 𝑦 ) ) |
| 6 |
5
|
imbi1d |
⊢ ( 𝑛 = 𝑦 → ( ( 𝑧 < 𝑛 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
| 7 |
6
|
ralbidv |
⊢ ( 𝑛 = 𝑦 → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑛 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
| 8 |
|
breq2 |
⊢ ( 𝑛 = ( 𝑦 + 1 ) → ( 𝑧 < 𝑛 ↔ 𝑧 < ( 𝑦 + 1 ) ) ) |
| 9 |
8
|
imbi1d |
⊢ ( 𝑛 = ( 𝑦 + 1 ) → ( ( 𝑧 < 𝑛 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
| 10 |
9
|
ralbidv |
⊢ ( 𝑛 = ( 𝑦 + 1 ) → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑛 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
| 11 |
|
nnnlt1 |
⊢ ( 𝑧 ∈ ℕ → ¬ 𝑧 < 1 ) |
| 12 |
11
|
pm2.21d |
⊢ ( 𝑧 ∈ ℕ → ( 𝑧 < 1 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) |
| 13 |
12
|
rgen |
⊢ ∀ 𝑧 ∈ ℕ ( 𝑧 < 1 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) |
| 14 |
|
nnrp |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ+ ) |
| 15 |
|
rphalflt |
⊢ ( 𝑦 ∈ ℝ+ → ( 𝑦 / 2 ) < 𝑦 ) |
| 16 |
14 15
|
syl |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 / 2 ) < 𝑦 ) |
| 17 |
|
breq1 |
⊢ ( 𝑧 = ( 𝑦 / 2 ) → ( 𝑧 < 𝑦 ↔ ( 𝑦 / 2 ) < 𝑦 ) ) |
| 18 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑦 / 2 ) → ( 𝑥 / 𝑧 ) = ( 𝑥 / ( 𝑦 / 2 ) ) ) |
| 19 |
18
|
neeq2d |
⊢ ( 𝑧 = ( 𝑦 / 2 ) → ( ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ↔ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) |
| 20 |
19
|
ralbidv |
⊢ ( 𝑧 = ( 𝑦 / 2 ) → ( ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ↔ ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) |
| 21 |
17 20
|
imbi12d |
⊢ ( 𝑧 = ( 𝑦 / 2 ) → ( ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( ( 𝑦 / 2 ) < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) ) |
| 22 |
21
|
rspcv |
⊢ ( ( 𝑦 / 2 ) ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ( ( 𝑦 / 2 ) < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) ) |
| 23 |
22
|
com13 |
⊢ ( ( 𝑦 / 2 ) < 𝑦 → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) ) |
| 24 |
16 23
|
syl |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) ) |
| 25 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) |
| 26 |
|
zcn |
⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℂ ) |
| 27 |
26
|
ad2antlr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → 𝑧 ∈ ℂ ) |
| 28 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
| 29 |
28
|
ad2antrr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → 𝑦 ∈ ℂ ) |
| 30 |
|
2cnd |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → 2 ∈ ℂ ) |
| 31 |
|
nnne0 |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) |
| 32 |
31
|
ad2antrr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → 𝑦 ≠ 0 ) |
| 33 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 34 |
33
|
a1i |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → 2 ≠ 0 ) |
| 35 |
27 29 30 32 34
|
divcan7d |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) = ( 𝑧 / 𝑦 ) ) |
| 36 |
25 35
|
eqtr4d |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( √ ‘ 2 ) = ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) ) |
| 37 |
|
simplr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → 𝑧 ∈ ℤ ) |
| 38 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → 𝑦 ∈ ℕ ) |
| 39 |
37 38 25
|
sqrt2irrlem |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( ( 𝑧 / 2 ) ∈ ℤ ∧ ( 𝑦 / 2 ) ∈ ℕ ) ) |
| 40 |
39
|
simprd |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( 𝑦 / 2 ) ∈ ℕ ) |
| 41 |
39
|
simpld |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( 𝑧 / 2 ) ∈ ℤ ) |
| 42 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑧 / 2 ) → ( 𝑥 / ( 𝑦 / 2 ) ) = ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) ) |
| 43 |
42
|
neeq2d |
⊢ ( 𝑥 = ( 𝑧 / 2 ) → ( ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ↔ ( √ ‘ 2 ) ≠ ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) ) ) |
| 44 |
43
|
rspcv |
⊢ ( ( 𝑧 / 2 ) ∈ ℤ → ( ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) → ( √ ‘ 2 ) ≠ ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) ) ) |
| 45 |
41 44
|
syl |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) → ( √ ‘ 2 ) ≠ ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) ) ) |
| 46 |
40 45
|
embantd |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) → ( √ ‘ 2 ) ≠ ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) ) ) |
| 47 |
46
|
necon2bd |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( ( √ ‘ 2 ) = ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) → ¬ ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) ) |
| 48 |
36 47
|
mpd |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ¬ ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) |
| 49 |
48
|
ex |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) → ( ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) → ¬ ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) ) |
| 50 |
49
|
necon2ad |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) → ( ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) → ( √ ‘ 2 ) ≠ ( 𝑧 / 𝑦 ) ) ) |
| 51 |
50
|
ralrimdva |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) → ∀ 𝑧 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑧 / 𝑦 ) ) ) |
| 52 |
24 51
|
syld |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ∀ 𝑧 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑧 / 𝑦 ) ) ) |
| 53 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 / 𝑦 ) = ( 𝑧 / 𝑦 ) ) |
| 54 |
53
|
neeq2d |
⊢ ( 𝑥 = 𝑧 → ( ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑦 ) ↔ ( √ ‘ 2 ) ≠ ( 𝑧 / 𝑦 ) ) ) |
| 55 |
54
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑦 ) ↔ ∀ 𝑧 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑧 / 𝑦 ) ) |
| 56 |
52 55
|
imbitrrdi |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑦 ) ) ) |
| 57 |
|
oveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 / 𝑧 ) = ( 𝑥 / 𝑦 ) ) |
| 58 |
57
|
neeq2d |
⊢ ( 𝑧 = 𝑦 → ( ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ↔ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑦 ) ) ) |
| 59 |
58
|
ralbidv |
⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ↔ ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑦 ) ) ) |
| 60 |
59
|
ceqsralv |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑦 ) ) ) |
| 61 |
56 60
|
sylibrd |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ∀ 𝑧 ∈ ℕ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
| 62 |
61
|
ancld |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) ) |
| 63 |
|
nnleltp1 |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑧 ≤ 𝑦 ↔ 𝑧 < ( 𝑦 + 1 ) ) ) |
| 64 |
|
nnre |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℝ ) |
| 65 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
| 66 |
|
leloe |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ≤ 𝑦 ↔ ( 𝑧 < 𝑦 ∨ 𝑧 = 𝑦 ) ) ) |
| 67 |
64 65 66
|
syl2an |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑧 ≤ 𝑦 ↔ ( 𝑧 < 𝑦 ∨ 𝑧 = 𝑦 ) ) ) |
| 68 |
63 67
|
bitr3d |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑧 < ( 𝑦 + 1 ) ↔ ( 𝑧 < 𝑦 ∨ 𝑧 = 𝑦 ) ) ) |
| 69 |
68
|
ancoms |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( 𝑧 < ( 𝑦 + 1 ) ↔ ( 𝑧 < 𝑦 ∨ 𝑧 = 𝑦 ) ) ) |
| 70 |
69
|
imbi1d |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( ( 𝑧 < 𝑦 ∨ 𝑧 = 𝑦 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
| 71 |
|
jaob |
⊢ ( ( ( 𝑧 < 𝑦 ∨ 𝑧 = 𝑦 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ∧ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
| 72 |
70 71
|
bitrdi |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ∧ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) ) |
| 73 |
72
|
ralbidva |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ∀ 𝑧 ∈ ℕ ( ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ∧ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) ) |
| 74 |
|
r19.26 |
⊢ ( ∀ 𝑧 ∈ ℕ ( ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ∧ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ↔ ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
| 75 |
73 74
|
bitrdi |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) ) |
| 76 |
62 75
|
sylibrd |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
| 77 |
4 7 10 10 13 76
|
nnind |
⊢ ( ( 𝑦 + 1 ) ∈ ℕ → ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) |
| 78 |
1 77
|
syl |
⊢ ( 𝑦 ∈ ℕ → ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) |
| 79 |
65
|
ltp1d |
⊢ ( 𝑦 ∈ ℕ → 𝑦 < ( 𝑦 + 1 ) ) |
| 80 |
|
breq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 < ( 𝑦 + 1 ) ↔ 𝑦 < ( 𝑦 + 1 ) ) ) |
| 81 |
|
df-ne |
⊢ ( ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑦 ) ↔ ¬ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) |
| 82 |
58 81
|
bitrdi |
⊢ ( 𝑧 = 𝑦 → ( ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ↔ ¬ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) ) |
| 83 |
82
|
ralbidv |
⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ↔ ∀ 𝑥 ∈ ℤ ¬ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) ) |
| 84 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ ℤ ¬ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ↔ ¬ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) |
| 85 |
83 84
|
bitrdi |
⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ↔ ¬ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) ) |
| 86 |
80 85
|
imbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( 𝑦 < ( 𝑦 + 1 ) → ¬ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) ) ) |
| 87 |
86
|
rspcv |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ( 𝑦 < ( 𝑦 + 1 ) → ¬ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) ) ) |
| 88 |
78 79 87
|
mp2d |
⊢ ( 𝑦 ∈ ℕ → ¬ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) |
| 89 |
88
|
nrex |
⊢ ¬ ∃ 𝑦 ∈ ℕ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) |
| 90 |
|
elq |
⊢ ( ( √ ‘ 2 ) ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) |
| 91 |
|
rexcom |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ↔ ∃ 𝑦 ∈ ℕ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) |
| 92 |
90 91
|
bitri |
⊢ ( ( √ ‘ 2 ) ∈ ℚ ↔ ∃ 𝑦 ∈ ℕ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) |
| 93 |
89 92
|
mtbir |
⊢ ¬ ( √ ‘ 2 ) ∈ ℚ |
| 94 |
93
|
nelir |
⊢ ( √ ‘ 2 ) ∉ ℚ |