| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zcn |
|
| 2 |
|
sqval |
|
| 3 |
1 2
|
syl |
|
| 4 |
3
|
oveq1d |
|
| 5 |
|
2cnd |
|
| 6 |
|
2ne0 |
|
| 7 |
6
|
a1i |
|
| 8 |
1 1 5 7
|
divassd |
|
| 9 |
4 8
|
eqtrd |
|
| 10 |
9
|
adantr |
|
| 11 |
|
zmulcl |
|
| 12 |
10 11
|
eqeltrd |
|
| 13 |
1
|
adantr |
|
| 14 |
|
sqcl |
|
| 15 |
13 14
|
syl |
|
| 16 |
|
peano2cn |
|
| 17 |
15 16
|
syl |
|
| 18 |
17
|
halfcld |
|
| 19 |
18 13
|
pncand |
|
| 20 |
|
binom21 |
|
| 21 |
13 20
|
syl |
|
| 22 |
|
peano2cn |
|
| 23 |
13 22
|
syl |
|
| 24 |
|
sqval |
|
| 25 |
23 24
|
syl |
|
| 26 |
|
2cn |
|
| 27 |
|
mulcl |
|
| 28 |
26 13 27
|
sylancr |
|
| 29 |
|
1cnd |
|
| 30 |
15 28 29
|
add32d |
|
| 31 |
21 25 30
|
3eqtr3d |
|
| 32 |
31
|
oveq1d |
|
| 33 |
|
2cnd |
|
| 34 |
6
|
a1i |
|
| 35 |
23 23 33 34
|
divassd |
|
| 36 |
17 28 33 34
|
divdird |
|
| 37 |
13 33 34
|
divcan3d |
|
| 38 |
37
|
oveq2d |
|
| 39 |
36 38
|
eqtrd |
|
| 40 |
32 35 39
|
3eqtr3d |
|
| 41 |
|
peano2z |
|
| 42 |
|
zmulcl |
|
| 43 |
41 42
|
sylan |
|
| 44 |
40 43
|
eqeltrrd |
|
| 45 |
|
simpl |
|
| 46 |
44 45
|
zsubcld |
|
| 47 |
19 46
|
eqeltrrd |
|
| 48 |
47
|
ex |
|
| 49 |
48
|
con3d |
|
| 50 |
|
zsqcl |
|
| 51 |
|
zeo2 |
|
| 52 |
50 51
|
syl |
|
| 53 |
|
zeo2 |
|
| 54 |
49 52 53
|
3imtr4d |
|
| 55 |
54
|
imp |
|
| 56 |
12 55
|
impbida |
|