Metamath Proof Explorer


Theorem ax11-pm

Description: Proof of ax-11 similar to PM's proof of alcom (PM*11.2). For a proof closer to PM's proof, see ax11-pm2 . Axiom ax-11 is used in the proof only through nfa2 . (Contributed by BJ, 15-Sep-2018) (Proof modification is discouraged.)

Ref Expression
Assertion ax11-pm
|- ( A. x A. y ph -> A. y A. x ph )

Proof

Step Hyp Ref Expression
1 2sp
 |-  ( A. x A. y ph -> ph )
2 1 gen2
 |-  A. y A. x ( A. x A. y ph -> ph )
3 nfa2
 |-  F/ y A. x A. y ph
4 nfa1
 |-  F/ x A. x A. y ph
5 3 4 2stdpc5
 |-  ( A. y A. x ( A. x A. y ph -> ph ) -> ( A. x A. y ph -> A. y A. x ph ) )
6 2 5 ax-mp
 |-  ( A. x A. y ph -> A. y A. x ph )