Step |
Hyp |
Ref |
Expression |
1 |
|
axdc2.1 |
|- A e. _V |
2 |
|
eleq1w |
|- ( s = x -> ( s e. A <-> x e. A ) ) |
3 |
2
|
adantr |
|- ( ( s = x /\ t = y ) -> ( s e. A <-> x e. A ) ) |
4 |
|
fveq2 |
|- ( s = x -> ( F ` s ) = ( F ` x ) ) |
5 |
4
|
eleq2d |
|- ( s = x -> ( t e. ( F ` s ) <-> t e. ( F ` x ) ) ) |
6 |
|
eleq1w |
|- ( t = y -> ( t e. ( F ` x ) <-> y e. ( F ` x ) ) ) |
7 |
5 6
|
sylan9bb |
|- ( ( s = x /\ t = y ) -> ( t e. ( F ` s ) <-> y e. ( F ` x ) ) ) |
8 |
3 7
|
anbi12d |
|- ( ( s = x /\ t = y ) -> ( ( s e. A /\ t e. ( F ` s ) ) <-> ( x e. A /\ y e. ( F ` x ) ) ) ) |
9 |
8
|
cbvopabv |
|- { <. s , t >. | ( s e. A /\ t e. ( F ` s ) ) } = { <. x , y >. | ( x e. A /\ y e. ( F ` x ) ) } |
10 |
|
fveq2 |
|- ( n = x -> ( h ` n ) = ( h ` x ) ) |
11 |
10
|
cbvmptv |
|- ( n e. _om |-> ( h ` n ) ) = ( x e. _om |-> ( h ` x ) ) |
12 |
1 9 11
|
axdc2lem |
|- ( ( A =/= (/) /\ F : A --> ( ~P A \ { (/) } ) ) -> E. g ( g : _om --> A /\ A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) ) ) |