| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axdc3lem.1 |
|- A e. _V |
| 2 |
|
axdc3lem.2 |
|- S = { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } |
| 3 |
|
dcomex |
|- _om e. _V |
| 4 |
3 1
|
xpex |
|- ( _om X. A ) e. _V |
| 5 |
4
|
pwex |
|- ~P ( _om X. A ) e. _V |
| 6 |
|
fssxp |
|- ( s : suc n --> A -> s C_ ( suc n X. A ) ) |
| 7 |
|
peano2 |
|- ( n e. _om -> suc n e. _om ) |
| 8 |
|
omelon2 |
|- ( _om e. _V -> _om e. On ) |
| 9 |
3 8
|
ax-mp |
|- _om e. On |
| 10 |
9
|
onelssi |
|- ( suc n e. _om -> suc n C_ _om ) |
| 11 |
|
xpss1 |
|- ( suc n C_ _om -> ( suc n X. A ) C_ ( _om X. A ) ) |
| 12 |
7 10 11
|
3syl |
|- ( n e. _om -> ( suc n X. A ) C_ ( _om X. A ) ) |
| 13 |
6 12
|
sylan9ss |
|- ( ( s : suc n --> A /\ n e. _om ) -> s C_ ( _om X. A ) ) |
| 14 |
|
velpw |
|- ( s e. ~P ( _om X. A ) <-> s C_ ( _om X. A ) ) |
| 15 |
13 14
|
sylibr |
|- ( ( s : suc n --> A /\ n e. _om ) -> s e. ~P ( _om X. A ) ) |
| 16 |
15
|
ancoms |
|- ( ( n e. _om /\ s : suc n --> A ) -> s e. ~P ( _om X. A ) ) |
| 17 |
16
|
3ad2antr1 |
|- ( ( n e. _om /\ ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) -> s e. ~P ( _om X. A ) ) |
| 18 |
17
|
rexlimiva |
|- ( E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> s e. ~P ( _om X. A ) ) |
| 19 |
18
|
abssi |
|- { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } C_ ~P ( _om X. A ) |
| 20 |
2 19
|
eqsstri |
|- S C_ ~P ( _om X. A ) |
| 21 |
5 20
|
ssexi |
|- S e. _V |