Metamath Proof Explorer


Theorem axdc3lem

Description: The class S of finite approximations to the DC sequence is a set. (We derive here the stronger statement that S is a subset of a specific set, namely ~P ( _om X. A ) .) (Contributed by Mario Carneiro, 27-Jan-2013) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 18-Mar-2014)

Ref Expression
Hypotheses axdc3lem.1 AV
axdc3lem.2 S=s|nωs:sucnAs=CknssuckFsk
Assertion axdc3lem SV

Proof

Step Hyp Ref Expression
1 axdc3lem.1 AV
2 axdc3lem.2 S=s|nωs:sucnAs=CknssuckFsk
3 dcomex ωV
4 3 1 xpex ω×AV
5 4 pwex 𝒫ω×AV
6 fssxp s:sucnAssucn×A
7 peano2 nωsucnω
8 omelon2 ωVωOn
9 3 8 ax-mp ωOn
10 9 onelssi sucnωsucnω
11 xpss1 sucnωsucn×Aω×A
12 7 10 11 3syl nωsucn×Aω×A
13 6 12 sylan9ss s:sucnAnωsω×A
14 velpw s𝒫ω×Asω×A
15 13 14 sylibr s:sucnAnωs𝒫ω×A
16 15 ancoms nωs:sucnAs𝒫ω×A
17 16 3ad2antr1 nωs:sucnAs=CknssuckFsks𝒫ω×A
18 17 rexlimiva nωs:sucnAs=CknssuckFsks𝒫ω×A
19 18 abssi s|nωs:sucnAs=CknssuckFsk𝒫ω×A
20 2 19 eqsstri S𝒫ω×A
21 5 20 ssexi SV