Metamath Proof Explorer


Theorem axdc2

Description: An apparent strengthening of ax-dc (but derived from it) which shows that there is a denumerable sequence g for any function that maps elements of a set A to nonempty subsets of A such that g ( x + 1 ) e. F ( g ( x ) ) for all x e. _om . The finitistic version of this can be proven by induction, but the infinite version requires this new axiom. (Contributed by Mario Carneiro, 25-Jan-2013)

Ref Expression
Hypothesis axdc2.1 A V
Assertion axdc2 A F : A 𝒫 A g g : ω A k ω g suc k F g k

Proof

Step Hyp Ref Expression
1 axdc2.1 A V
2 eleq1w s = x s A x A
3 2 adantr s = x t = y s A x A
4 fveq2 s = x F s = F x
5 4 eleq2d s = x t F s t F x
6 eleq1w t = y t F x y F x
7 5 6 sylan9bb s = x t = y t F s y F x
8 3 7 anbi12d s = x t = y s A t F s x A y F x
9 8 cbvopabv s t | s A t F s = x y | x A y F x
10 fveq2 n = x h n = h x
11 10 cbvmptv n ω h n = x ω h x
12 1 9 11 axdc2lem A F : A 𝒫 A g g : ω A k ω g suc k F g k