Metamath Proof Explorer


Theorem axdc2

Description: An apparent strengthening of ax-dc (but derived from it) which shows that there is a denumerable sequence g for any function that maps elements of a set A to nonempty subsets of A such that g ( x + 1 ) e. F ( g ( x ) ) for all x e. _om . The finitistic version of this can be proven by induction, but the infinite version requires this new axiom. (Contributed by Mario Carneiro, 25-Jan-2013)

Ref Expression
Hypothesis axdc2.1 AV
Assertion axdc2 AF:A𝒫Agg:ωAkωgsuckFgk

Proof

Step Hyp Ref Expression
1 axdc2.1 AV
2 eleq1w s=xsAxA
3 2 adantr s=xt=ysAxA
4 fveq2 s=xFs=Fx
5 4 eleq2d s=xtFstFx
6 eleq1w t=ytFxyFx
7 5 6 sylan9bb s=xt=ytFsyFx
8 3 7 anbi12d s=xt=ysAtFsxAyFx
9 8 cbvopabv st|sAtFs=xy|xAyFx
10 fveq2 n=xhn=hx
11 10 cbvmptv nωhn=xωhx
12 1 9 11 axdc2lem AF:A𝒫Agg:ωAkωgsuckFgk