Metamath Proof Explorer


Theorem axdc2lem

Description: Lemma for axdc2 . We construct a relation R based on F such that x R y iff y e. ( Fx ) , and show that the "function" described by ax-dc can be restricted so that it is a real function (since the stated properties only show that it is the superset of a function). (Contributed by Mario Carneiro, 25-Jan-2013) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses axdc2lem.1 A V
axdc2lem.2 R = x y | x A y F x
axdc2lem.3 G = x ω h x
Assertion axdc2lem A F : A 𝒫 A g g : ω A k ω g suc k F g k

Proof

Step Hyp Ref Expression
1 axdc2lem.1 A V
2 axdc2lem.2 R = x y | x A y F x
3 axdc2lem.3 G = x ω h x
4 2 dmeqi dom R = dom x y | x A y F x
5 19.42v y x A y F x x A y y F x
6 5 abbii x | y x A y F x = x | x A y y F x
7 dmopab dom x y | x A y F x = x | y x A y F x
8 df-rab x A | y y F x = x | x A y y F x
9 6 7 8 3eqtr4i dom x y | x A y F x = x A | y y F x
10 4 9 eqtri dom R = x A | y y F x
11 ffvelrn F : A 𝒫 A x A F x 𝒫 A
12 eldifsni F x 𝒫 A F x
13 n0 F x y y F x
14 12 13 sylib F x 𝒫 A y y F x
15 11 14 syl F : A 𝒫 A x A y y F x
16 15 ralrimiva F : A 𝒫 A x A y y F x
17 rabid2 A = x A | y y F x x A y y F x
18 16 17 sylibr F : A 𝒫 A A = x A | y y F x
19 10 18 eqtr4id F : A 𝒫 A dom R = A
20 19 neeq1d F : A 𝒫 A dom R A
21 20 biimparc A F : A 𝒫 A dom R
22 eldifi F x 𝒫 A F x 𝒫 A
23 elelpwi y F x F x 𝒫 A y A
24 23 expcom F x 𝒫 A y F x y A
25 11 22 24 3syl F : A 𝒫 A x A y F x y A
26 25 expimpd F : A 𝒫 A x A y F x y A
27 26 exlimdv F : A 𝒫 A x x A y F x y A
28 27 alrimiv F : A 𝒫 A y x x A y F x y A
29 2 rneqi ran R = ran x y | x A y F x
30 rnopab ran x y | x A y F x = y | x x A y F x
31 29 30 eqtri ran R = y | x x A y F x
32 31 sseq1i ran R A y | x x A y F x A
33 abss y | x x A y F x A y x x A y F x y A
34 32 33 bitri ran R A y x x A y F x y A
35 28 34 sylibr F : A 𝒫 A ran R A
36 35 19 sseqtrrd F : A 𝒫 A ran R dom R
37 36 adantl A F : A 𝒫 A ran R dom R
38 fvrn0 F x ran F
39 elssuni F x ran F F x ran F
40 38 39 ax-mp F x ran F
41 40 sseli y F x y ran F
42 41 anim2i x A y F x x A y ran F
43 42 ssopab2i x y | x A y F x x y | x A y ran F
44 df-xp A × ran F = x y | x A y ran F
45 43 2 44 3sstr4i R A × ran F
46 frn F : A 𝒫 A ran F 𝒫 A
47 46 adantl A F : A 𝒫 A ran F 𝒫 A
48 1 pwex 𝒫 A V
49 48 difexi 𝒫 A V
50 49 ssex ran F 𝒫 A ran F V
51 47 50 syl A F : A 𝒫 A ran F V
52 p0ex V
53 unexg ran F V V ran F V
54 51 52 53 sylancl A F : A 𝒫 A ran F V
55 54 uniexd A F : A 𝒫 A ran F V
56 xpexg A V ran F V A × ran F V
57 1 55 56 sylancr A F : A 𝒫 A A × ran F V
58 ssexg R A × ran F A × ran F V R V
59 45 57 58 sylancr A F : A 𝒫 A R V
60 n0 dom r x x dom r
61 vex x V
62 61 eldm x dom r y x r y
63 62 exbii x x dom r x y x r y
64 60 63 bitr2i x y x r y dom r
65 dmeq r = R dom r = dom R
66 65 neeq1d r = R dom r dom R
67 64 66 syl5bb r = R x y x r y dom R
68 rneq r = R ran r = ran R
69 68 65 sseq12d r = R ran r dom r ran R dom R
70 67 69 anbi12d r = R x y x r y ran r dom r dom R ran R dom R
71 breq r = R h k r h suc k h k R h suc k
72 71 ralbidv r = R k ω h k r h suc k k ω h k R h suc k
73 72 exbidv r = R h k ω h k r h suc k h k ω h k R h suc k
74 70 73 imbi12d r = R x y x r y ran r dom r h k ω h k r h suc k dom R ran R dom R h k ω h k R h suc k
75 ax-dc x y x r y ran r dom r h k ω h k r h suc k
76 74 75 vtoclg R V dom R ran R dom R h k ω h k R h suc k
77 59 76 syl A F : A 𝒫 A dom R ran R dom R h k ω h k R h suc k
78 21 37 77 mp2and A F : A 𝒫 A h k ω h k R h suc k
79 simpr A F : A 𝒫 A F : A 𝒫 A
80 fveq2 k = x h k = h x
81 suceq k = x suc k = suc x
82 81 fveq2d k = x h suc k = h suc x
83 80 82 breq12d k = x h k R h suc k h x R h suc x
84 83 rspccv k ω h k R h suc k x ω h x R h suc x
85 fvex h x V
86 fvex h suc x V
87 85 86 breldm h x R h suc x h x dom R
88 84 87 syl6 k ω h k R h suc k x ω h x dom R
89 88 imp k ω h k R h suc k x ω h x dom R
90 89 adantll dom R = A k ω h k R h suc k x ω h x dom R
91 eleq2 dom R = A h x dom R h x A
92 91 ad2antrr dom R = A k ω h k R h suc k x ω h x dom R h x A
93 90 92 mpbid dom R = A k ω h k R h suc k x ω h x A
94 93 3 fmptd dom R = A k ω h k R h suc k G : ω A
95 94 ex dom R = A k ω h k R h suc k G : ω A
96 19 95 syl F : A 𝒫 A k ω h k R h suc k G : ω A
97 96 impcom k ω h k R h suc k F : A 𝒫 A G : ω A
98 fveq2 x = k h x = h k
99 fvex h k V
100 98 3 99 fvmpt k ω G k = h k
101 peano2 k ω suc k ω
102 fvex h suc k V
103 fveq2 x = suc k h x = h suc k
104 103 3 fvmptg suc k ω h suc k V G suc k = h suc k
105 101 102 104 sylancl k ω G suc k = h suc k
106 100 105 breq12d k ω G k R G suc k h k R h suc k
107 fvex G k V
108 fvex G suc k V
109 eleq1 x = G k x A G k A
110 fveq2 x = G k F x = F G k
111 110 eleq2d x = G k y F x y F G k
112 109 111 anbi12d x = G k x A y F x G k A y F G k
113 eleq1 y = G suc k y F G k G suc k F G k
114 113 anbi2d y = G suc k G k A y F G k G k A G suc k F G k
115 107 108 112 114 2 brab G k R G suc k G k A G suc k F G k
116 115 simprbi G k R G suc k G suc k F G k
117 106 116 syl6bir k ω h k R h suc k G suc k F G k
118 117 ralimia k ω h k R h suc k k ω G suc k F G k
119 118 adantr k ω h k R h suc k F : A 𝒫 A k ω G suc k F G k
120 fvrn0 h x ran h
121 120 rgenw x ω h x ran h
122 eqid x ω h x = x ω h x
123 122 fmpt x ω h x ran h x ω h x : ω ran h
124 121 123 mpbi x ω h x : ω ran h
125 dcomex ω V
126 vex h V
127 126 rnex ran h V
128 127 52 unex ran h V
129 fex2 x ω h x : ω ran h ω V ran h V x ω h x V
130 124 125 128 129 mp3an x ω h x V
131 3 130 eqeltri G V
132 feq1 g = G g : ω A G : ω A
133 fveq1 g = G g suc k = G suc k
134 fveq1 g = G g k = G k
135 134 fveq2d g = G F g k = F G k
136 133 135 eleq12d g = G g suc k F g k G suc k F G k
137 136 ralbidv g = G k ω g suc k F g k k ω G suc k F G k
138 132 137 anbi12d g = G g : ω A k ω g suc k F g k G : ω A k ω G suc k F G k
139 131 138 spcev G : ω A k ω G suc k F G k g g : ω A k ω g suc k F g k
140 97 119 139 syl2anc k ω h k R h suc k F : A 𝒫 A g g : ω A k ω g suc k F g k
141 140 ex k ω h k R h suc k F : A 𝒫 A g g : ω A k ω g suc k F g k
142 141 exlimiv h k ω h k R h suc k F : A 𝒫 A g g : ω A k ω g suc k F g k
143 78 79 142 sylc A F : A 𝒫 A g g : ω A k ω g suc k F g k