Step |
Hyp |
Ref |
Expression |
1 |
|
axsegconlem2.1 |
|- S = sum_ p e. ( 1 ... N ) ( ( ( A ` p ) - ( B ` p ) ) ^ 2 ) |
2 |
|
axsegconlem7.2 |
|- T = sum_ p e. ( 1 ... N ) ( ( ( C ` p ) - ( D ` p ) ) ^ 2 ) |
3 |
2
|
axsegconlem5 |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> 0 <_ ( sqrt ` T ) ) |
4 |
3
|
adantl |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> 0 <_ ( sqrt ` T ) ) |
5 |
1
|
axsegconlem4 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( sqrt ` S ) e. RR ) |
6 |
5
|
3adant3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> ( sqrt ` S ) e. RR ) |
7 |
2
|
axsegconlem4 |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> ( sqrt ` T ) e. RR ) |
8 |
|
addge01 |
|- ( ( ( sqrt ` S ) e. RR /\ ( sqrt ` T ) e. RR ) -> ( 0 <_ ( sqrt ` T ) <-> ( sqrt ` S ) <_ ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) |
9 |
6 7 8
|
syl2an |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( 0 <_ ( sqrt ` T ) <-> ( sqrt ` S ) <_ ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) |
10 |
4 9
|
mpbid |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( sqrt ` S ) <_ ( ( sqrt ` S ) + ( sqrt ` T ) ) ) |
11 |
6
|
adantr |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( sqrt ` S ) e. RR ) |
12 |
1
|
axsegconlem5 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> 0 <_ ( sqrt ` S ) ) |
13 |
12
|
3adant3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> 0 <_ ( sqrt ` S ) ) |
14 |
13
|
adantr |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> 0 <_ ( sqrt ` S ) ) |
15 |
|
readdcl |
|- ( ( ( sqrt ` S ) e. RR /\ ( sqrt ` T ) e. RR ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) e. RR ) |
16 |
6 7 15
|
syl2an |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) e. RR ) |
17 |
|
0red |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> 0 e. RR ) |
18 |
1
|
axsegconlem6 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> 0 < ( sqrt ` S ) ) |
19 |
18
|
adantr |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> 0 < ( sqrt ` S ) ) |
20 |
17 11 16 19 10
|
ltletrd |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> 0 < ( ( sqrt ` S ) + ( sqrt ` T ) ) ) |
21 |
|
divelunit |
|- ( ( ( ( sqrt ` S ) e. RR /\ 0 <_ ( sqrt ` S ) ) /\ ( ( ( sqrt ` S ) + ( sqrt ` T ) ) e. RR /\ 0 < ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) -> ( ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) e. ( 0 [,] 1 ) <-> ( sqrt ` S ) <_ ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) |
22 |
11 14 16 20 21
|
syl22anc |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) e. ( 0 [,] 1 ) <-> ( sqrt ` S ) <_ ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) |
23 |
10 22
|
mpbird |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) e. ( 0 [,] 1 ) ) |