Metamath Proof Explorer


Theorem baroco

Description: "Baroco", one of the syllogisms of Aristotelian logic. All ph is ps , and some ch is not ps , therefore some ch is not ph . In Aristotelian notation, AOO-2: PaM and SoM therefore SoP. For example, "All informative things are useful", "Some websites are not useful", therefore "Some websites are not informative". (Contributed by David A. Wheeler, 28-Aug-2016) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)

Ref Expression
Hypotheses baroco.maj
|- A. x ( ph -> ps )
baroco.min
|- E. x ( ch /\ -. ps )
Assertion baroco
|- E. x ( ch /\ -. ph )

Proof

Step Hyp Ref Expression
1 baroco.maj
 |-  A. x ( ph -> ps )
2 baroco.min
 |-  E. x ( ch /\ -. ps )
3 con3
 |-  ( ( ph -> ps ) -> ( -. ps -> -. ph ) )
4 3 anim2d
 |-  ( ( ph -> ps ) -> ( ( ch /\ -. ps ) -> ( ch /\ -. ph ) ) )
5 4 alimi
 |-  ( A. x ( ph -> ps ) -> A. x ( ( ch /\ -. ps ) -> ( ch /\ -. ph ) ) )
6 1 5 ax-mp
 |-  A. x ( ( ch /\ -. ps ) -> ( ch /\ -. ph ) )
7 exim
 |-  ( A. x ( ( ch /\ -. ps ) -> ( ch /\ -. ph ) ) -> ( E. x ( ch /\ -. ps ) -> E. x ( ch /\ -. ph ) ) )
8 6 2 7 mp2
 |-  E. x ( ch /\ -. ph )