| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( A e. No /\ B = ( bday ` A ) ) -> B = ( bday ` A ) ) |
| 2 |
|
bdayval |
|- ( A e. No -> ( bday ` A ) = dom A ) |
| 3 |
2
|
adantr |
|- ( ( A e. No /\ B = ( bday ` A ) ) -> ( bday ` A ) = dom A ) |
| 4 |
1 3
|
eqtrd |
|- ( ( A e. No /\ B = ( bday ` A ) ) -> B = dom A ) |
| 5 |
|
nodmon |
|- ( A e. No -> dom A e. On ) |
| 6 |
5
|
adantr |
|- ( ( A e. No /\ B = ( bday ` A ) ) -> dom A e. On ) |
| 7 |
4 6
|
eqeltrd |
|- ( ( A e. No /\ B = ( bday ` A ) ) -> B e. On ) |
| 8 |
|
onnog |
|- ( ( B e. On /\ C e. { 1o , 2o } ) -> ( B X. { C } ) e. No ) |
| 9 |
7 8
|
stoic3 |
|- ( ( A e. No /\ B = ( bday ` A ) /\ C e. { 1o , 2o } ) -> ( B X. { C } ) e. No ) |