| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bdaybndex |
|- ( ( A e. No /\ B = ( bday ` A ) /\ C e. { 1o , 2o } ) -> ( B X. { C } ) e. No ) |
| 2 |
|
bdayval |
|- ( ( B X. { C } ) e. No -> ( bday ` ( B X. { C } ) ) = dom ( B X. { C } ) ) |
| 3 |
1 2
|
syl |
|- ( ( A e. No /\ B = ( bday ` A ) /\ C e. { 1o , 2o } ) -> ( bday ` ( B X. { C } ) ) = dom ( B X. { C } ) ) |
| 4 |
|
simp3 |
|- ( ( A e. No /\ B = ( bday ` A ) /\ C e. { 1o , 2o } ) -> C e. { 1o , 2o } ) |
| 5 |
|
snnzg |
|- ( C e. { 1o , 2o } -> { C } =/= (/) ) |
| 6 |
|
dmxp |
|- ( { C } =/= (/) -> dom ( B X. { C } ) = B ) |
| 7 |
4 5 6
|
3syl |
|- ( ( A e. No /\ B = ( bday ` A ) /\ C e. { 1o , 2o } ) -> dom ( B X. { C } ) = B ) |
| 8 |
|
simp2 |
|- ( ( A e. No /\ B = ( bday ` A ) /\ C e. { 1o , 2o } ) -> B = ( bday ` A ) ) |
| 9 |
3 7 8
|
3eqtrd |
|- ( ( A e. No /\ B = ( bday ` A ) /\ C e. { 1o , 2o } ) -> ( bday ` ( B X. { C } ) ) = ( bday ` A ) ) |