Step |
Hyp |
Ref |
Expression |
1 |
|
bdaybndex |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 = ( bday ‘ 𝐴 ) ∧ 𝐶 ∈ { 1o , 2o } ) → ( 𝐵 × { 𝐶 } ) ∈ No ) |
2 |
|
bdayval |
⊢ ( ( 𝐵 × { 𝐶 } ) ∈ No → ( bday ‘ ( 𝐵 × { 𝐶 } ) ) = dom ( 𝐵 × { 𝐶 } ) ) |
3 |
1 2
|
syl |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 = ( bday ‘ 𝐴 ) ∧ 𝐶 ∈ { 1o , 2o } ) → ( bday ‘ ( 𝐵 × { 𝐶 } ) ) = dom ( 𝐵 × { 𝐶 } ) ) |
4 |
|
simp3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 = ( bday ‘ 𝐴 ) ∧ 𝐶 ∈ { 1o , 2o } ) → 𝐶 ∈ { 1o , 2o } ) |
5 |
|
snnzg |
⊢ ( 𝐶 ∈ { 1o , 2o } → { 𝐶 } ≠ ∅ ) |
6 |
|
dmxp |
⊢ ( { 𝐶 } ≠ ∅ → dom ( 𝐵 × { 𝐶 } ) = 𝐵 ) |
7 |
4 5 6
|
3syl |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 = ( bday ‘ 𝐴 ) ∧ 𝐶 ∈ { 1o , 2o } ) → dom ( 𝐵 × { 𝐶 } ) = 𝐵 ) |
8 |
|
simp2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 = ( bday ‘ 𝐴 ) ∧ 𝐶 ∈ { 1o , 2o } ) → 𝐵 = ( bday ‘ 𝐴 ) ) |
9 |
3 7 8
|
3eqtrd |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 = ( bday ‘ 𝐴 ) ∧ 𝐶 ∈ { 1o , 2o } ) → ( bday ‘ ( 𝐵 × { 𝐶 } ) ) = ( bday ‘ 𝐴 ) ) |