| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 = ( bday ‘ 𝐴 ) ) → 𝐵 = ( bday ‘ 𝐴 ) ) |
| 2 |
|
bdayval |
⊢ ( 𝐴 ∈ No → ( bday ‘ 𝐴 ) = dom 𝐴 ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 = ( bday ‘ 𝐴 ) ) → ( bday ‘ 𝐴 ) = dom 𝐴 ) |
| 4 |
1 3
|
eqtrd |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 = ( bday ‘ 𝐴 ) ) → 𝐵 = dom 𝐴 ) |
| 5 |
|
nodmon |
⊢ ( 𝐴 ∈ No → dom 𝐴 ∈ On ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 = ( bday ‘ 𝐴 ) ) → dom 𝐴 ∈ On ) |
| 7 |
4 6
|
eqeltrd |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 = ( bday ‘ 𝐴 ) ) → 𝐵 ∈ On ) |
| 8 |
|
onnog |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ { 1o , 2o } ) → ( 𝐵 × { 𝐶 } ) ∈ No ) |
| 9 |
7 8
|
stoic3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 = ( bday ‘ 𝐴 ) ∧ 𝐶 ∈ { 1o , 2o } ) → ( 𝐵 × { 𝐶 } ) ∈ No ) |