Metamath Proof Explorer


Theorem onnog

Description: Every ordinal maps to a surreal number. (Contributed by RP, 21-Sep-2023)

Ref Expression
Assertion onnog ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ) → ( 𝐴 × { 𝐵 } ) ∈ No )

Proof

Step Hyp Ref Expression
1 fconst6g ( 𝐵 ∈ { 1o , 2o } → ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 1o , 2o } )
2 1 adantl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ) → ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 1o , 2o } )
3 simp3 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ∧ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 1o , 2o } ) → ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 1o , 2o } )
4 3 ffund ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ∧ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 1o , 2o } ) → Fun ( 𝐴 × { 𝐵 } ) )
5 simp2 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ∧ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 1o , 2o } ) → 𝐵 ∈ { 1o , 2o } )
6 snnzg ( 𝐵 ∈ { 1o , 2o } → { 𝐵 } ≠ ∅ )
7 dmxp ( { 𝐵 } ≠ ∅ → dom ( 𝐴 × { 𝐵 } ) = 𝐴 )
8 7 eqcomd ( { 𝐵 } ≠ ∅ → 𝐴 = dom ( 𝐴 × { 𝐵 } ) )
9 5 6 8 3syl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ∧ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 1o , 2o } ) → 𝐴 = dom ( 𝐴 × { 𝐵 } ) )
10 simp1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ∧ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 1o , 2o } ) → 𝐴 ∈ On )
11 9 10 eqeltrrd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ∧ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 1o , 2o } ) → dom ( 𝐴 × { 𝐵 } ) ∈ On )
12 3 frnd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ∧ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 1o , 2o } ) → ran ( 𝐴 × { 𝐵 } ) ⊆ { 1o , 2o } )
13 elno2 ( ( 𝐴 × { 𝐵 } ) ∈ No ↔ ( Fun ( 𝐴 × { 𝐵 } ) ∧ dom ( 𝐴 × { 𝐵 } ) ∈ On ∧ ran ( 𝐴 × { 𝐵 } ) ⊆ { 1o , 2o } ) )
14 4 11 12 13 syl3anbrc ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ∧ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 1o , 2o } ) → ( 𝐴 × { 𝐵 } ) ∈ No )
15 2 14 mpd3an3 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ) → ( 𝐴 × { 𝐵 } ) ∈ No )