| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fconst6g |
⊢ ( 𝐵 ∈ { 1o , 2o } → ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 1o , 2o } ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ) → ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 1o , 2o } ) |
| 3 |
|
simp3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ∧ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 1o , 2o } ) → ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 1o , 2o } ) |
| 4 |
3
|
ffund |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ∧ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 1o , 2o } ) → Fun ( 𝐴 × { 𝐵 } ) ) |
| 5 |
|
simp2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ∧ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 1o , 2o } ) → 𝐵 ∈ { 1o , 2o } ) |
| 6 |
|
snnzg |
⊢ ( 𝐵 ∈ { 1o , 2o } → { 𝐵 } ≠ ∅ ) |
| 7 |
|
dmxp |
⊢ ( { 𝐵 } ≠ ∅ → dom ( 𝐴 × { 𝐵 } ) = 𝐴 ) |
| 8 |
7
|
eqcomd |
⊢ ( { 𝐵 } ≠ ∅ → 𝐴 = dom ( 𝐴 × { 𝐵 } ) ) |
| 9 |
5 6 8
|
3syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ∧ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 1o , 2o } ) → 𝐴 = dom ( 𝐴 × { 𝐵 } ) ) |
| 10 |
|
simp1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ∧ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 1o , 2o } ) → 𝐴 ∈ On ) |
| 11 |
9 10
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ∧ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 1o , 2o } ) → dom ( 𝐴 × { 𝐵 } ) ∈ On ) |
| 12 |
3
|
frnd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ∧ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 1o , 2o } ) → ran ( 𝐴 × { 𝐵 } ) ⊆ { 1o , 2o } ) |
| 13 |
|
elno2 |
⊢ ( ( 𝐴 × { 𝐵 } ) ∈ No ↔ ( Fun ( 𝐴 × { 𝐵 } ) ∧ dom ( 𝐴 × { 𝐵 } ) ∈ On ∧ ran ( 𝐴 × { 𝐵 } ) ⊆ { 1o , 2o } ) ) |
| 14 |
4 11 12 13
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ∧ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 1o , 2o } ) → ( 𝐴 × { 𝐵 } ) ∈ No ) |
| 15 |
2 14
|
mpd3an3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ) → ( 𝐴 × { 𝐵 } ) ∈ No ) |