Metamath Proof Explorer


Theorem onnobdayg

Description: Every ordinal maps to a surreal number of that birthday. (Contributed by RP, 21-Sep-2023)

Ref Expression
Assertion onnobdayg ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ) → ( bday ‘ ( 𝐴 × { 𝐵 } ) ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 onnog ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ) → ( 𝐴 × { 𝐵 } ) ∈ No )
2 bdayval ( ( 𝐴 × { 𝐵 } ) ∈ No → ( bday ‘ ( 𝐴 × { 𝐵 } ) ) = dom ( 𝐴 × { 𝐵 } ) )
3 1 2 syl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ) → ( bday ‘ ( 𝐴 × { 𝐵 } ) ) = dom ( 𝐴 × { 𝐵 } ) )
4 simpr ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ) → 𝐵 ∈ { 1o , 2o } )
5 snnzg ( 𝐵 ∈ { 1o , 2o } → { 𝐵 } ≠ ∅ )
6 dmxp ( { 𝐵 } ≠ ∅ → dom ( 𝐴 × { 𝐵 } ) = 𝐴 )
7 4 5 6 3syl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ) → dom ( 𝐴 × { 𝐵 } ) = 𝐴 )
8 3 7 eqtrd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ) → ( bday ‘ ( 𝐴 × { 𝐵 } ) ) = 𝐴 )