Step |
Hyp |
Ref |
Expression |
1 |
|
onnog |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ) → ( 𝐴 × { 𝐵 } ) ∈ No ) |
2 |
|
bdayval |
⊢ ( ( 𝐴 × { 𝐵 } ) ∈ No → ( bday ‘ ( 𝐴 × { 𝐵 } ) ) = dom ( 𝐴 × { 𝐵 } ) ) |
3 |
1 2
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ) → ( bday ‘ ( 𝐴 × { 𝐵 } ) ) = dom ( 𝐴 × { 𝐵 } ) ) |
4 |
|
simpr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ) → 𝐵 ∈ { 1o , 2o } ) |
5 |
|
snnzg |
⊢ ( 𝐵 ∈ { 1o , 2o } → { 𝐵 } ≠ ∅ ) |
6 |
|
dmxp |
⊢ ( { 𝐵 } ≠ ∅ → dom ( 𝐴 × { 𝐵 } ) = 𝐴 ) |
7 |
4 5 6
|
3syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ) → dom ( 𝐴 × { 𝐵 } ) = 𝐴 ) |
8 |
3 7
|
eqtrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ { 1o , 2o } ) → ( bday ‘ ( 𝐴 × { 𝐵 } ) ) = 𝐴 ) |