Metamath Proof Explorer


Theorem onnobdayg

Description: Every ordinal maps to a surreal number of that birthday. (Contributed by RP, 21-Sep-2023)

Ref Expression
Assertion onnobdayg
|- ( ( A e. On /\ B e. { 1o , 2o } ) -> ( bday ` ( A X. { B } ) ) = A )

Proof

Step Hyp Ref Expression
1 onnog
 |-  ( ( A e. On /\ B e. { 1o , 2o } ) -> ( A X. { B } ) e. No )
2 bdayval
 |-  ( ( A X. { B } ) e. No -> ( bday ` ( A X. { B } ) ) = dom ( A X. { B } ) )
3 1 2 syl
 |-  ( ( A e. On /\ B e. { 1o , 2o } ) -> ( bday ` ( A X. { B } ) ) = dom ( A X. { B } ) )
4 simpr
 |-  ( ( A e. On /\ B e. { 1o , 2o } ) -> B e. { 1o , 2o } )
5 snnzg
 |-  ( B e. { 1o , 2o } -> { B } =/= (/) )
6 dmxp
 |-  ( { B } =/= (/) -> dom ( A X. { B } ) = A )
7 4 5 6 3syl
 |-  ( ( A e. On /\ B e. { 1o , 2o } ) -> dom ( A X. { B } ) = A )
8 3 7 eqtrd
 |-  ( ( A e. On /\ B e. { 1o , 2o } ) -> ( bday ` ( A X. { B } ) ) = A )