| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onnog |
|- ( ( A e. On /\ B e. { 1o , 2o } ) -> ( A X. { B } ) e. No ) |
| 2 |
|
bdayval |
|- ( ( A X. { B } ) e. No -> ( bday ` ( A X. { B } ) ) = dom ( A X. { B } ) ) |
| 3 |
1 2
|
syl |
|- ( ( A e. On /\ B e. { 1o , 2o } ) -> ( bday ` ( A X. { B } ) ) = dom ( A X. { B } ) ) |
| 4 |
|
simpr |
|- ( ( A e. On /\ B e. { 1o , 2o } ) -> B e. { 1o , 2o } ) |
| 5 |
|
snnzg |
|- ( B e. { 1o , 2o } -> { B } =/= (/) ) |
| 6 |
|
dmxp |
|- ( { B } =/= (/) -> dom ( A X. { B } ) = A ) |
| 7 |
4 5 6
|
3syl |
|- ( ( A e. On /\ B e. { 1o , 2o } ) -> dom ( A X. { B } ) = A ) |
| 8 |
3 7
|
eqtrd |
|- ( ( A e. On /\ B e. { 1o , 2o } ) -> ( bday ` ( A X. { B } ) ) = A ) |