Metamath Proof Explorer


Theorem onnog

Description: Every ordinal maps to a surreal number. (Contributed by RP, 21-Sep-2023)

Ref Expression
Assertion onnog A On B 1 𝑜 2 𝑜 A × B No

Proof

Step Hyp Ref Expression
1 fconst6g B 1 𝑜 2 𝑜 A × B : A 1 𝑜 2 𝑜
2 1 adantl A On B 1 𝑜 2 𝑜 A × B : A 1 𝑜 2 𝑜
3 simp3 A On B 1 𝑜 2 𝑜 A × B : A 1 𝑜 2 𝑜 A × B : A 1 𝑜 2 𝑜
4 3 ffund A On B 1 𝑜 2 𝑜 A × B : A 1 𝑜 2 𝑜 Fun A × B
5 simp2 A On B 1 𝑜 2 𝑜 A × B : A 1 𝑜 2 𝑜 B 1 𝑜 2 𝑜
6 snnzg B 1 𝑜 2 𝑜 B
7 dmxp B dom A × B = A
8 7 eqcomd B A = dom A × B
9 5 6 8 3syl A On B 1 𝑜 2 𝑜 A × B : A 1 𝑜 2 𝑜 A = dom A × B
10 simp1 A On B 1 𝑜 2 𝑜 A × B : A 1 𝑜 2 𝑜 A On
11 9 10 eqeltrrd A On B 1 𝑜 2 𝑜 A × B : A 1 𝑜 2 𝑜 dom A × B On
12 3 frnd A On B 1 𝑜 2 𝑜 A × B : A 1 𝑜 2 𝑜 ran A × B 1 𝑜 2 𝑜
13 elno2 A × B No Fun A × B dom A × B On ran A × B 1 𝑜 2 𝑜
14 4 11 12 13 syl3anbrc A On B 1 𝑜 2 𝑜 A × B : A 1 𝑜 2 𝑜 A × B No
15 2 14 mpd3an3 A On B 1 𝑜 2 𝑜 A × B No