Metamath Proof Explorer


Theorem onnog

Description: Every ordinal maps to a surreal number. (Contributed by RP, 21-Sep-2023)

Ref Expression
Assertion onnog AOnB1𝑜2𝑜A×BNo

Proof

Step Hyp Ref Expression
1 fconst6g B1𝑜2𝑜A×B:A1𝑜2𝑜
2 1 adantl AOnB1𝑜2𝑜A×B:A1𝑜2𝑜
3 simp3 AOnB1𝑜2𝑜A×B:A1𝑜2𝑜A×B:A1𝑜2𝑜
4 3 ffund AOnB1𝑜2𝑜A×B:A1𝑜2𝑜FunA×B
5 simp2 AOnB1𝑜2𝑜A×B:A1𝑜2𝑜B1𝑜2𝑜
6 snnzg B1𝑜2𝑜B
7 dmxp BdomA×B=A
8 7 eqcomd BA=domA×B
9 5 6 8 3syl AOnB1𝑜2𝑜A×B:A1𝑜2𝑜A=domA×B
10 simp1 AOnB1𝑜2𝑜A×B:A1𝑜2𝑜AOn
11 9 10 eqeltrrd AOnB1𝑜2𝑜A×B:A1𝑜2𝑜domA×BOn
12 3 frnd AOnB1𝑜2𝑜A×B:A1𝑜2𝑜ranA×B1𝑜2𝑜
13 elno2 A×BNoFunA×BdomA×BOnranA×B1𝑜2𝑜
14 4 11 12 13 syl3anbrc AOnB1𝑜2𝑜A×B:A1𝑜2𝑜A×BNo
15 2 14 mpd3an3 AOnB1𝑜2𝑜A×BNo