Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Surreal Contributions
onnog
Next ⟩
onnobdayg
Metamath Proof Explorer
Ascii
Unicode
Theorem
onnog
Description:
Every ordinal maps to a surreal number.
(Contributed by
RP
, 21-Sep-2023)
Ref
Expression
Assertion
onnog
⊢
A
∈
On
∧
B
∈
1
𝑜
2
𝑜
→
A
×
B
∈
No
Proof
Step
Hyp
Ref
Expression
1
fconst6g
⊢
B
∈
1
𝑜
2
𝑜
→
A
×
B
:
A
⟶
1
𝑜
2
𝑜
2
1
adantl
⊢
A
∈
On
∧
B
∈
1
𝑜
2
𝑜
→
A
×
B
:
A
⟶
1
𝑜
2
𝑜
3
simp3
⊢
A
∈
On
∧
B
∈
1
𝑜
2
𝑜
∧
A
×
B
:
A
⟶
1
𝑜
2
𝑜
→
A
×
B
:
A
⟶
1
𝑜
2
𝑜
4
3
ffund
⊢
A
∈
On
∧
B
∈
1
𝑜
2
𝑜
∧
A
×
B
:
A
⟶
1
𝑜
2
𝑜
→
Fun
⁡
A
×
B
5
simp2
⊢
A
∈
On
∧
B
∈
1
𝑜
2
𝑜
∧
A
×
B
:
A
⟶
1
𝑜
2
𝑜
→
B
∈
1
𝑜
2
𝑜
6
snnzg
⊢
B
∈
1
𝑜
2
𝑜
→
B
≠
∅
7
dmxp
⊢
B
≠
∅
→
dom
⁡
A
×
B
=
A
8
7
eqcomd
⊢
B
≠
∅
→
A
=
dom
⁡
A
×
B
9
5
6
8
3syl
⊢
A
∈
On
∧
B
∈
1
𝑜
2
𝑜
∧
A
×
B
:
A
⟶
1
𝑜
2
𝑜
→
A
=
dom
⁡
A
×
B
10
simp1
⊢
A
∈
On
∧
B
∈
1
𝑜
2
𝑜
∧
A
×
B
:
A
⟶
1
𝑜
2
𝑜
→
A
∈
On
11
9
10
eqeltrrd
⊢
A
∈
On
∧
B
∈
1
𝑜
2
𝑜
∧
A
×
B
:
A
⟶
1
𝑜
2
𝑜
→
dom
⁡
A
×
B
∈
On
12
3
frnd
⊢
A
∈
On
∧
B
∈
1
𝑜
2
𝑜
∧
A
×
B
:
A
⟶
1
𝑜
2
𝑜
→
ran
⁡
A
×
B
⊆
1
𝑜
2
𝑜
13
elno2
⊢
A
×
B
∈
No
↔
Fun
⁡
A
×
B
∧
dom
⁡
A
×
B
∈
On
∧
ran
⁡
A
×
B
⊆
1
𝑜
2
𝑜
14
4
11
12
13
syl3anbrc
⊢
A
∈
On
∧
B
∈
1
𝑜
2
𝑜
∧
A
×
B
:
A
⟶
1
𝑜
2
𝑜
→
A
×
B
∈
No
15
2
14
mpd3an3
⊢
A
∈
On
∧
B
∈
1
𝑜
2
𝑜
→
A
×
B
∈
No