Metamath Proof Explorer


Theorem bits0oALTV

Description: The zeroth bit of an odd number is zero. (Contributed by Mario Carneiro, 5-Sep-2016) (Revised by AV, 19-Jun-2020)

Ref Expression
Assertion bits0oALTV
|- ( N e. Odd -> 0 e. ( bits ` N ) )

Proof

Step Hyp Ref Expression
1 oddz
 |-  ( N e. Odd -> N e. ZZ )
2 bits0ALTV
 |-  ( N e. ZZ -> ( 0 e. ( bits ` N ) <-> N e. Odd ) )
3 1 2 syl
 |-  ( N e. Odd -> ( 0 e. ( bits ` N ) <-> N e. Odd ) )
4 3 ibir
 |-  ( N e. Odd -> 0 e. ( bits ` N ) )