Metamath Proof Explorer


Theorem bits0oALTV

Description: The zeroth bit of an odd number is zero. (Contributed by Mario Carneiro, 5-Sep-2016) (Revised by AV, 19-Jun-2020)

Ref Expression
Assertion bits0oALTV ( 𝑁 ∈ Odd → 0 ∈ ( bits ‘ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 oddz ( 𝑁 ∈ Odd → 𝑁 ∈ ℤ )
2 bits0ALTV ( 𝑁 ∈ ℤ → ( 0 ∈ ( bits ‘ 𝑁 ) ↔ 𝑁 ∈ Odd ) )
3 1 2 syl ( 𝑁 ∈ Odd → ( 0 ∈ ( bits ‘ 𝑁 ) ↔ 𝑁 ∈ Odd ) )
4 3 ibir ( 𝑁 ∈ Odd → 0 ∈ ( bits ‘ 𝑁 ) )