Metamath Proof Explorer
Description: The zeroth bit of an odd number is zero. (Contributed by Mario Carneiro, 5-Sep-2016) (Revised by AV, 19-Jun-2020)
|
|
Ref |
Expression |
|
Assertion |
bits0oALTV |
⊢ ( 𝑁 ∈ Odd → 0 ∈ ( bits ‘ 𝑁 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oddz |
⊢ ( 𝑁 ∈ Odd → 𝑁 ∈ ℤ ) |
| 2 |
|
bits0ALTV |
⊢ ( 𝑁 ∈ ℤ → ( 0 ∈ ( bits ‘ 𝑁 ) ↔ 𝑁 ∈ Odd ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝑁 ∈ Odd → ( 0 ∈ ( bits ‘ 𝑁 ) ↔ 𝑁 ∈ Odd ) ) |
| 4 |
3
|
ibir |
⊢ ( 𝑁 ∈ Odd → 0 ∈ ( bits ‘ 𝑁 ) ) |