| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divgcdodd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∨ ¬ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
| 2 |
|
nnz |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) |
| 3 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
| 4 |
|
gcddvds |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
| 5 |
2 3 4
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
| 6 |
5
|
simpld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) |
| 7 |
2 3
|
anim12i |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
| 8 |
|
nnne0 |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ≠ 0 ) |
| 9 |
8
|
neneqd |
⊢ ( 𝐴 ∈ ℕ → ¬ 𝐴 = 0 ) |
| 10 |
9
|
intnanrd |
⊢ ( 𝐴 ∈ ℕ → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
| 12 |
|
gcdn0cl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
| 13 |
7 11 12
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
| 14 |
13
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 15 |
13
|
nnne0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
| 16 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
| 17 |
|
dvdsval2 |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
| 18 |
14 15 16 17
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
| 19 |
6 18
|
mpbid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) |
| 20 |
19
|
biantrurd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↔ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ) ) |
| 21 |
5
|
simprd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
| 22 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
| 23 |
|
dvdsval2 |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
| 24 |
14 15 22 23
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
| 25 |
21 24
|
mpbid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) |
| 26 |
25
|
biantrurd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ¬ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↔ ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ ¬ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) ) |
| 27 |
20 26
|
orbi12d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∨ ¬ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ↔ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ∨ ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ ¬ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) ) ) |
| 28 |
1 27
|
mpbid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ∨ ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ ¬ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) ) |
| 29 |
|
isodd3 |
⊢ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ Odd ↔ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ) |
| 30 |
|
isodd3 |
⊢ ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ Odd ↔ ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ ¬ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
| 31 |
29 30
|
orbi12i |
⊢ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ Odd ∨ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ Odd ) ↔ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ∨ ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ ¬ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) ) |
| 32 |
28 31
|
sylibr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ Odd ∨ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ Odd ) ) |