| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divgcdodd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ¬  2  ∥  ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  ∨  ¬  2  ∥  ( 𝐵  /  ( 𝐴  gcd  𝐵 ) ) ) ) | 
						
							| 2 |  | nnz | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℤ ) | 
						
							| 3 |  | nnz | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℤ ) | 
						
							| 4 |  | gcddvds | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐴  ∧  ( 𝐴  gcd  𝐵 )  ∥  𝐵 ) ) | 
						
							| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐴  ∧  ( 𝐴  gcd  𝐵 )  ∥  𝐵 ) ) | 
						
							| 6 | 5 | simpld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  gcd  𝐵 )  ∥  𝐴 ) | 
						
							| 7 | 2 3 | anim12i | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ ) ) | 
						
							| 8 |  | nnne0 | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ≠  0 ) | 
						
							| 9 | 8 | neneqd | ⊢ ( 𝐴  ∈  ℕ  →  ¬  𝐴  =  0 ) | 
						
							| 10 | 9 | intnanrd | ⊢ ( 𝐴  ∈  ℕ  →  ¬  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ¬  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) | 
						
							| 12 |  | gcdn0cl | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ¬  ( 𝐴  =  0  ∧  𝐵  =  0 ) )  →  ( 𝐴  gcd  𝐵 )  ∈  ℕ ) | 
						
							| 13 | 7 11 12 | syl2anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  gcd  𝐵 )  ∈  ℕ ) | 
						
							| 14 | 13 | nnzd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  gcd  𝐵 )  ∈  ℤ ) | 
						
							| 15 | 13 | nnne0d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  gcd  𝐵 )  ≠  0 ) | 
						
							| 16 | 2 | adantr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  𝐴  ∈  ℤ ) | 
						
							| 17 |  | dvdsval2 | ⊢ ( ( ( 𝐴  gcd  𝐵 )  ∈  ℤ  ∧  ( 𝐴  gcd  𝐵 )  ≠  0  ∧  𝐴  ∈  ℤ )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐴  ↔  ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℤ ) ) | 
						
							| 18 | 14 15 16 17 | syl3anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐴  ↔  ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℤ ) ) | 
						
							| 19 | 6 18 | mpbid | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℤ ) | 
						
							| 20 | 19 | biantrurd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ¬  2  ∥  ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  ↔  ( ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℤ  ∧  ¬  2  ∥  ( 𝐴  /  ( 𝐴  gcd  𝐵 ) ) ) ) ) | 
						
							| 21 | 5 | simprd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  gcd  𝐵 )  ∥  𝐵 ) | 
						
							| 22 | 3 | adantl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  𝐵  ∈  ℤ ) | 
						
							| 23 |  | dvdsval2 | ⊢ ( ( ( 𝐴  gcd  𝐵 )  ∈  ℤ  ∧  ( 𝐴  gcd  𝐵 )  ≠  0  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐵  ↔  ( 𝐵  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℤ ) ) | 
						
							| 24 | 14 15 22 23 | syl3anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐵  ↔  ( 𝐵  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℤ ) ) | 
						
							| 25 | 21 24 | mpbid | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 𝐵  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℤ ) | 
						
							| 26 | 25 | biantrurd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ¬  2  ∥  ( 𝐵  /  ( 𝐴  gcd  𝐵 ) )  ↔  ( ( 𝐵  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℤ  ∧  ¬  2  ∥  ( 𝐵  /  ( 𝐴  gcd  𝐵 ) ) ) ) ) | 
						
							| 27 | 20 26 | orbi12d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ( ¬  2  ∥  ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  ∨  ¬  2  ∥  ( 𝐵  /  ( 𝐴  gcd  𝐵 ) ) )  ↔  ( ( ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℤ  ∧  ¬  2  ∥  ( 𝐴  /  ( 𝐴  gcd  𝐵 ) ) )  ∨  ( ( 𝐵  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℤ  ∧  ¬  2  ∥  ( 𝐵  /  ( 𝐴  gcd  𝐵 ) ) ) ) ) ) | 
						
							| 28 | 1 27 | mpbid | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ( ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℤ  ∧  ¬  2  ∥  ( 𝐴  /  ( 𝐴  gcd  𝐵 ) ) )  ∨  ( ( 𝐵  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℤ  ∧  ¬  2  ∥  ( 𝐵  /  ( 𝐴  gcd  𝐵 ) ) ) ) ) | 
						
							| 29 |  | isodd3 | ⊢ ( ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  ∈   Odd   ↔  ( ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℤ  ∧  ¬  2  ∥  ( 𝐴  /  ( 𝐴  gcd  𝐵 ) ) ) ) | 
						
							| 30 |  | isodd3 | ⊢ ( ( 𝐵  /  ( 𝐴  gcd  𝐵 ) )  ∈   Odd   ↔  ( ( 𝐵  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℤ  ∧  ¬  2  ∥  ( 𝐵  /  ( 𝐴  gcd  𝐵 ) ) ) ) | 
						
							| 31 | 29 30 | orbi12i | ⊢ ( ( ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  ∈   Odd   ∨  ( 𝐵  /  ( 𝐴  gcd  𝐵 ) )  ∈   Odd  )  ↔  ( ( ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℤ  ∧  ¬  2  ∥  ( 𝐴  /  ( 𝐴  gcd  𝐵 ) ) )  ∨  ( ( 𝐵  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℤ  ∧  ¬  2  ∥  ( 𝐵  /  ( 𝐴  gcd  𝐵 ) ) ) ) ) | 
						
							| 32 | 28 31 | sylibr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  ∈   Odd   ∨  ( 𝐵  /  ( 𝐴  gcd  𝐵 ) )  ∈   Odd  ) ) |