| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divgcdodd |
|- ( ( A e. NN /\ B e. NN ) -> ( -. 2 || ( A / ( A gcd B ) ) \/ -. 2 || ( B / ( A gcd B ) ) ) ) |
| 2 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
| 3 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
| 4 |
|
gcddvds |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 5 |
2 3 4
|
syl2an |
|- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 6 |
5
|
simpld |
|- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) || A ) |
| 7 |
2 3
|
anim12i |
|- ( ( A e. NN /\ B e. NN ) -> ( A e. ZZ /\ B e. ZZ ) ) |
| 8 |
|
nnne0 |
|- ( A e. NN -> A =/= 0 ) |
| 9 |
8
|
neneqd |
|- ( A e. NN -> -. A = 0 ) |
| 10 |
9
|
intnanrd |
|- ( A e. NN -> -. ( A = 0 /\ B = 0 ) ) |
| 11 |
10
|
adantr |
|- ( ( A e. NN /\ B e. NN ) -> -. ( A = 0 /\ B = 0 ) ) |
| 12 |
|
gcdn0cl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. NN ) |
| 13 |
7 11 12
|
syl2anc |
|- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) e. NN ) |
| 14 |
13
|
nnzd |
|- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) e. ZZ ) |
| 15 |
13
|
nnne0d |
|- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) =/= 0 ) |
| 16 |
2
|
adantr |
|- ( ( A e. NN /\ B e. NN ) -> A e. ZZ ) |
| 17 |
|
dvdsval2 |
|- ( ( ( A gcd B ) e. ZZ /\ ( A gcd B ) =/= 0 /\ A e. ZZ ) -> ( ( A gcd B ) || A <-> ( A / ( A gcd B ) ) e. ZZ ) ) |
| 18 |
14 15 16 17
|
syl3anc |
|- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) || A <-> ( A / ( A gcd B ) ) e. ZZ ) ) |
| 19 |
6 18
|
mpbid |
|- ( ( A e. NN /\ B e. NN ) -> ( A / ( A gcd B ) ) e. ZZ ) |
| 20 |
19
|
biantrurd |
|- ( ( A e. NN /\ B e. NN ) -> ( -. 2 || ( A / ( A gcd B ) ) <-> ( ( A / ( A gcd B ) ) e. ZZ /\ -. 2 || ( A / ( A gcd B ) ) ) ) ) |
| 21 |
5
|
simprd |
|- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) || B ) |
| 22 |
3
|
adantl |
|- ( ( A e. NN /\ B e. NN ) -> B e. ZZ ) |
| 23 |
|
dvdsval2 |
|- ( ( ( A gcd B ) e. ZZ /\ ( A gcd B ) =/= 0 /\ B e. ZZ ) -> ( ( A gcd B ) || B <-> ( B / ( A gcd B ) ) e. ZZ ) ) |
| 24 |
14 15 22 23
|
syl3anc |
|- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) || B <-> ( B / ( A gcd B ) ) e. ZZ ) ) |
| 25 |
21 24
|
mpbid |
|- ( ( A e. NN /\ B e. NN ) -> ( B / ( A gcd B ) ) e. ZZ ) |
| 26 |
25
|
biantrurd |
|- ( ( A e. NN /\ B e. NN ) -> ( -. 2 || ( B / ( A gcd B ) ) <-> ( ( B / ( A gcd B ) ) e. ZZ /\ -. 2 || ( B / ( A gcd B ) ) ) ) ) |
| 27 |
20 26
|
orbi12d |
|- ( ( A e. NN /\ B e. NN ) -> ( ( -. 2 || ( A / ( A gcd B ) ) \/ -. 2 || ( B / ( A gcd B ) ) ) <-> ( ( ( A / ( A gcd B ) ) e. ZZ /\ -. 2 || ( A / ( A gcd B ) ) ) \/ ( ( B / ( A gcd B ) ) e. ZZ /\ -. 2 || ( B / ( A gcd B ) ) ) ) ) ) |
| 28 |
1 27
|
mpbid |
|- ( ( A e. NN /\ B e. NN ) -> ( ( ( A / ( A gcd B ) ) e. ZZ /\ -. 2 || ( A / ( A gcd B ) ) ) \/ ( ( B / ( A gcd B ) ) e. ZZ /\ -. 2 || ( B / ( A gcd B ) ) ) ) ) |
| 29 |
|
isodd3 |
|- ( ( A / ( A gcd B ) ) e. Odd <-> ( ( A / ( A gcd B ) ) e. ZZ /\ -. 2 || ( A / ( A gcd B ) ) ) ) |
| 30 |
|
isodd3 |
|- ( ( B / ( A gcd B ) ) e. Odd <-> ( ( B / ( A gcd B ) ) e. ZZ /\ -. 2 || ( B / ( A gcd B ) ) ) ) |
| 31 |
29 30
|
orbi12i |
|- ( ( ( A / ( A gcd B ) ) e. Odd \/ ( B / ( A gcd B ) ) e. Odd ) <-> ( ( ( A / ( A gcd B ) ) e. ZZ /\ -. 2 || ( A / ( A gcd B ) ) ) \/ ( ( B / ( A gcd B ) ) e. ZZ /\ -. 2 || ( B / ( A gcd B ) ) ) ) ) |
| 32 |
28 31
|
sylibr |
|- ( ( A e. NN /\ B e. NN ) -> ( ( A / ( A gcd B ) ) e. Odd \/ ( B / ( A gcd B ) ) e. Odd ) ) |