Metamath Proof Explorer


Theorem bits0ALTV

Description: Value of the zeroth bit. (Contributed by Mario Carneiro, 5-Sep-2016) (Revised by AV, 19-Jun-2020)

Ref Expression
Assertion bits0ALTV ( 𝑁 ∈ ℤ → ( 0 ∈ ( bits ‘ 𝑁 ) ↔ 𝑁 ∈ Odd ) )

Proof

Step Hyp Ref Expression
1 0nn0 0 ∈ ℕ0
2 bitsval2 ( ( 𝑁 ∈ ℤ ∧ 0 ∈ ℕ0 ) → ( 0 ∈ ( bits ‘ 𝑁 ) ↔ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 0 ) ) ) ) )
3 1 2 mpan2 ( 𝑁 ∈ ℤ → ( 0 ∈ ( bits ‘ 𝑁 ) ↔ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 0 ) ) ) ) )
4 2cn 2 ∈ ℂ
5 exp0 ( 2 ∈ ℂ → ( 2 ↑ 0 ) = 1 )
6 4 5 ax-mp ( 2 ↑ 0 ) = 1
7 6 oveq2i ( 𝑁 / ( 2 ↑ 0 ) ) = ( 𝑁 / 1 )
8 zcn ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ )
9 8 div1d ( 𝑁 ∈ ℤ → ( 𝑁 / 1 ) = 𝑁 )
10 7 9 syl5eq ( 𝑁 ∈ ℤ → ( 𝑁 / ( 2 ↑ 0 ) ) = 𝑁 )
11 10 fveq2d ( 𝑁 ∈ ℤ → ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 0 ) ) ) = ( ⌊ ‘ 𝑁 ) )
12 flid ( 𝑁 ∈ ℤ → ( ⌊ ‘ 𝑁 ) = 𝑁 )
13 11 12 eqtrd ( 𝑁 ∈ ℤ → ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 0 ) ) ) = 𝑁 )
14 13 breq2d ( 𝑁 ∈ ℤ → ( 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 0 ) ) ) ↔ 2 ∥ 𝑁 ) )
15 14 notbid ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 0 ) ) ) ↔ ¬ 2 ∥ 𝑁 ) )
16 isodd3 ( 𝑁 ∈ Odd ↔ ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) )
17 16 baibr ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁𝑁 ∈ Odd ) )
18 3 15 17 3bitrd ( 𝑁 ∈ ℤ → ( 0 ∈ ( bits ‘ 𝑁 ) ↔ 𝑁 ∈ Odd ) )