| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 2 |  | bitsval2 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  0  ∈  ℕ0 )  →  ( 0  ∈  ( bits ‘ 𝑁 )  ↔  ¬  2  ∥  ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 0 ) ) ) ) ) | 
						
							| 3 | 1 2 | mpan2 | ⊢ ( 𝑁  ∈  ℤ  →  ( 0  ∈  ( bits ‘ 𝑁 )  ↔  ¬  2  ∥  ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 0 ) ) ) ) ) | 
						
							| 4 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 5 |  | exp0 | ⊢ ( 2  ∈  ℂ  →  ( 2 ↑ 0 )  =  1 ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ ( 2 ↑ 0 )  =  1 | 
						
							| 7 | 6 | oveq2i | ⊢ ( 𝑁  /  ( 2 ↑ 0 ) )  =  ( 𝑁  /  1 ) | 
						
							| 8 |  | zcn | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℂ ) | 
						
							| 9 | 8 | div1d | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  /  1 )  =  𝑁 ) | 
						
							| 10 | 7 9 | eqtrid | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  /  ( 2 ↑ 0 ) )  =  𝑁 ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝑁  ∈  ℤ  →  ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 0 ) ) )  =  ( ⌊ ‘ 𝑁 ) ) | 
						
							| 12 |  | flid | ⊢ ( 𝑁  ∈  ℤ  →  ( ⌊ ‘ 𝑁 )  =  𝑁 ) | 
						
							| 13 | 11 12 | eqtrd | ⊢ ( 𝑁  ∈  ℤ  →  ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 0 ) ) )  =  𝑁 ) | 
						
							| 14 | 13 | breq2d | ⊢ ( 𝑁  ∈  ℤ  →  ( 2  ∥  ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 0 ) ) )  ↔  2  ∥  𝑁 ) ) | 
						
							| 15 | 14 | notbid | ⊢ ( 𝑁  ∈  ℤ  →  ( ¬  2  ∥  ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 0 ) ) )  ↔  ¬  2  ∥  𝑁 ) ) | 
						
							| 16 |  | isodd3 | ⊢ ( 𝑁  ∈   Odd   ↔  ( 𝑁  ∈  ℤ  ∧  ¬  2  ∥  𝑁 ) ) | 
						
							| 17 | 16 | baibr | ⊢ ( 𝑁  ∈  ℤ  →  ( ¬  2  ∥  𝑁  ↔  𝑁  ∈   Odd  ) ) | 
						
							| 18 | 3 15 17 | 3bitrd | ⊢ ( 𝑁  ∈  ℤ  →  ( 0  ∈  ( bits ‘ 𝑁 )  ↔  𝑁  ∈   Odd  ) ) |