Step |
Hyp |
Ref |
Expression |
1 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
2 |
|
bitsval2 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 0 ∈ ℕ0 ) → ( 0 ∈ ( bits ‘ 𝑁 ) ↔ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 0 ) ) ) ) ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝑁 ∈ ℤ → ( 0 ∈ ( bits ‘ 𝑁 ) ↔ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 0 ) ) ) ) ) |
4 |
|
2cn |
⊢ 2 ∈ ℂ |
5 |
|
exp0 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 0 ) = 1 ) |
6 |
4 5
|
ax-mp |
⊢ ( 2 ↑ 0 ) = 1 |
7 |
6
|
oveq2i |
⊢ ( 𝑁 / ( 2 ↑ 0 ) ) = ( 𝑁 / 1 ) |
8 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
9 |
8
|
div1d |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 / 1 ) = 𝑁 ) |
10 |
7 9
|
syl5eq |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 / ( 2 ↑ 0 ) ) = 𝑁 ) |
11 |
10
|
fveq2d |
⊢ ( 𝑁 ∈ ℤ → ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 0 ) ) ) = ( ⌊ ‘ 𝑁 ) ) |
12 |
|
flid |
⊢ ( 𝑁 ∈ ℤ → ( ⌊ ‘ 𝑁 ) = 𝑁 ) |
13 |
11 12
|
eqtrd |
⊢ ( 𝑁 ∈ ℤ → ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 0 ) ) ) = 𝑁 ) |
14 |
13
|
breq2d |
⊢ ( 𝑁 ∈ ℤ → ( 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 0 ) ) ) ↔ 2 ∥ 𝑁 ) ) |
15 |
14
|
notbid |
⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 0 ) ) ) ↔ ¬ 2 ∥ 𝑁 ) ) |
16 |
|
isodd3 |
⊢ ( 𝑁 ∈ Odd ↔ ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) ) |
17 |
16
|
baibr |
⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ 𝑁 ∈ Odd ) ) |
18 |
3 15 17
|
3bitrd |
⊢ ( 𝑁 ∈ ℤ → ( 0 ∈ ( bits ‘ 𝑁 ) ↔ 𝑁 ∈ Odd ) ) |