Metamath Proof Explorer


Theorem bits0eALTV

Description: The zeroth bit of an even number is zero. (Contributed by Mario Carneiro, 5-Sep-2016) (Revised by AV, 19-Jun-2020)

Ref Expression
Assertion bits0eALTV ( 𝑁 ∈ Even → ¬ 0 ∈ ( bits ‘ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 evennodd ( 𝑁 ∈ Even → ¬ 𝑁 ∈ Odd )
2 evenz ( 𝑁 ∈ Even → 𝑁 ∈ ℤ )
3 bits0ALTV ( 𝑁 ∈ ℤ → ( 0 ∈ ( bits ‘ 𝑁 ) ↔ 𝑁 ∈ Odd ) )
4 2 3 syl ( 𝑁 ∈ Even → ( 0 ∈ ( bits ‘ 𝑁 ) ↔ 𝑁 ∈ Odd ) )
5 1 4 mtbird ( 𝑁 ∈ Even → ¬ 0 ∈ ( bits ‘ 𝑁 ) )