| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 2 |  | bitsval2 |  |-  ( ( N e. ZZ /\ 0 e. NN0 ) -> ( 0 e. ( bits ` N ) <-> -. 2 || ( |_ ` ( N / ( 2 ^ 0 ) ) ) ) ) | 
						
							| 3 | 1 2 | mpan2 |  |-  ( N e. ZZ -> ( 0 e. ( bits ` N ) <-> -. 2 || ( |_ ` ( N / ( 2 ^ 0 ) ) ) ) ) | 
						
							| 4 |  | 2cn |  |-  2 e. CC | 
						
							| 5 |  | exp0 |  |-  ( 2 e. CC -> ( 2 ^ 0 ) = 1 ) | 
						
							| 6 | 4 5 | ax-mp |  |-  ( 2 ^ 0 ) = 1 | 
						
							| 7 | 6 | oveq2i |  |-  ( N / ( 2 ^ 0 ) ) = ( N / 1 ) | 
						
							| 8 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 9 | 8 | div1d |  |-  ( N e. ZZ -> ( N / 1 ) = N ) | 
						
							| 10 | 7 9 | eqtrid |  |-  ( N e. ZZ -> ( N / ( 2 ^ 0 ) ) = N ) | 
						
							| 11 | 10 | fveq2d |  |-  ( N e. ZZ -> ( |_ ` ( N / ( 2 ^ 0 ) ) ) = ( |_ ` N ) ) | 
						
							| 12 |  | flid |  |-  ( N e. ZZ -> ( |_ ` N ) = N ) | 
						
							| 13 | 11 12 | eqtrd |  |-  ( N e. ZZ -> ( |_ ` ( N / ( 2 ^ 0 ) ) ) = N ) | 
						
							| 14 | 13 | breq2d |  |-  ( N e. ZZ -> ( 2 || ( |_ ` ( N / ( 2 ^ 0 ) ) ) <-> 2 || N ) ) | 
						
							| 15 | 14 | notbid |  |-  ( N e. ZZ -> ( -. 2 || ( |_ ` ( N / ( 2 ^ 0 ) ) ) <-> -. 2 || N ) ) | 
						
							| 16 |  | isodd3 |  |-  ( N e. Odd <-> ( N e. ZZ /\ -. 2 || N ) ) | 
						
							| 17 | 16 | baibr |  |-  ( N e. ZZ -> ( -. 2 || N <-> N e. Odd ) ) | 
						
							| 18 | 3 15 17 | 3bitrd |  |-  ( N e. ZZ -> ( 0 e. ( bits ` N ) <-> N e. Odd ) ) |