Description: Version of consensus expressed using the conditional operator. (Remark: it may be better to express it as consensus , using only binary connectives, and hinting at the fact that it is a Boolean algebra identity, like the absorption identities.) (Contributed by BJ, 30-Sep-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-consensus | |- ( ( if- ( ph , ps , ch ) \/ ( ps /\ ch ) ) <-> if- ( ph , ps , ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anifp | |- ( ( ps /\ ch ) -> if- ( ph , ps , ch ) ) |
|
2 | 1 | bj-jaoi2 | |- ( ( if- ( ph , ps , ch ) \/ ( ps /\ ch ) ) -> if- ( ph , ps , ch ) ) |
3 | orc | |- ( if- ( ph , ps , ch ) -> ( if- ( ph , ps , ch ) \/ ( ps /\ ch ) ) ) |
|
4 | 2 3 | impbii | |- ( ( if- ( ph , ps , ch ) \/ ( ps /\ ch ) ) <-> if- ( ph , ps , ch ) ) |