Metamath Proof Explorer


Theorem bj-consensusALT

Description: Alternate proof of bj-consensus . (Contributed by BJ, 30-Sep-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-consensusALT
|- ( ( if- ( ph , ps , ch ) \/ ( ps /\ ch ) ) <-> if- ( ph , ps , ch ) )

Proof

Step Hyp Ref Expression
1 orcom
 |-  ( ( if- ( ph , ps , ch ) \/ ( ps /\ ch ) ) <-> ( ( ps /\ ch ) \/ if- ( ph , ps , ch ) ) )
2 anifp
 |-  ( ( ps /\ ch ) -> if- ( ph , ps , ch ) )
3 pm4.72
 |-  ( ( ( ps /\ ch ) -> if- ( ph , ps , ch ) ) <-> ( if- ( ph , ps , ch ) <-> ( ( ps /\ ch ) \/ if- ( ph , ps , ch ) ) ) )
4 2 3 mpbi
 |-  ( if- ( ph , ps , ch ) <-> ( ( ps /\ ch ) \/ if- ( ph , ps , ch ) ) )
5 1 4 bitr4i
 |-  ( ( if- ( ph , ps , ch ) \/ ( ps /\ ch ) ) <-> if- ( ph , ps , ch ) )