Metamath Proof Explorer


Theorem bj-consensusALT

Description: Alternate proof of bj-consensus . (Contributed by BJ, 30-Sep-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-consensusALT ( ( if- ( 𝜑 , 𝜓 , 𝜒 ) ∨ ( 𝜓𝜒 ) ) ↔ if- ( 𝜑 , 𝜓 , 𝜒 ) )

Proof

Step Hyp Ref Expression
1 orcom ( ( if- ( 𝜑 , 𝜓 , 𝜒 ) ∨ ( 𝜓𝜒 ) ) ↔ ( ( 𝜓𝜒 ) ∨ if- ( 𝜑 , 𝜓 , 𝜒 ) ) )
2 anifp ( ( 𝜓𝜒 ) → if- ( 𝜑 , 𝜓 , 𝜒 ) )
3 pm4.72 ( ( ( 𝜓𝜒 ) → if- ( 𝜑 , 𝜓 , 𝜒 ) ) ↔ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜓𝜒 ) ∨ if- ( 𝜑 , 𝜓 , 𝜒 ) ) ) )
4 2 3 mpbi ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜓𝜒 ) ∨ if- ( 𝜑 , 𝜓 , 𝜒 ) ) )
5 1 4 bitr4i ( ( if- ( 𝜑 , 𝜓 , 𝜒 ) ∨ ( 𝜓𝜒 ) ) ↔ if- ( 𝜑 , 𝜓 , 𝜒 ) )