Description: Alternate proof of bj-consensus . (Contributed by BJ, 30-Sep-2019) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-consensusALT | ⊢ ( ( if- ( 𝜑 , 𝜓 , 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ↔ if- ( 𝜑 , 𝜓 , 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom | ⊢ ( ( if- ( 𝜑 , 𝜓 , 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∨ if- ( 𝜑 , 𝜓 , 𝜒 ) ) ) | |
2 | anifp | ⊢ ( ( 𝜓 ∧ 𝜒 ) → if- ( 𝜑 , 𝜓 , 𝜒 ) ) | |
3 | pm4.72 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) → if- ( 𝜑 , 𝜓 , 𝜒 ) ) ↔ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∨ if- ( 𝜑 , 𝜓 , 𝜒 ) ) ) ) | |
4 | 2 3 | mpbi | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∨ if- ( 𝜑 , 𝜓 , 𝜒 ) ) ) |
5 | 1 4 | bitr4i | ⊢ ( ( if- ( 𝜑 , 𝜓 , 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ↔ if- ( 𝜑 , 𝜓 , 𝜒 ) ) |