| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-elabd2ALT.ex |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | bj-elabd2ALT.eq |  |-  ( ph -> B = { x | ps } ) | 
						
							| 3 |  | bj-elabd2ALT.is |  |-  ( ( ph /\ x = A ) -> ( ps <-> ch ) ) | 
						
							| 4 |  | simpr |  |-  ( ( ph /\ y = A ) -> y = A ) | 
						
							| 5 | 2 | eqcomd |  |-  ( ph -> { x | ps } = B ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ph /\ y = A ) -> { x | ps } = B ) | 
						
							| 7 | 4 6 | eleq12d |  |-  ( ( ph /\ y = A ) -> ( y e. { x | ps } <-> A e. B ) ) | 
						
							| 8 |  | eqeq1 |  |-  ( x = y -> ( x = A <-> y = A ) ) | 
						
							| 9 | 8 | biimparc |  |-  ( ( y = A /\ x = y ) -> x = A ) | 
						
							| 10 | 9 | anim2i |  |-  ( ( ph /\ ( y = A /\ x = y ) ) -> ( ph /\ x = A ) ) | 
						
							| 11 | 10 | anassrs |  |-  ( ( ( ph /\ y = A ) /\ x = y ) -> ( ph /\ x = A ) ) | 
						
							| 12 | 11 3 | syl |  |-  ( ( ( ph /\ y = A ) /\ x = y ) -> ( ps <-> ch ) ) | 
						
							| 13 | 12 | sbiedvw |  |-  ( ( ph /\ y = A ) -> ( [ y / x ] ps <-> ch ) ) | 
						
							| 14 | 7 13 | bibi12d |  |-  ( ( ph /\ y = A ) -> ( ( y e. { x | ps } <-> [ y / x ] ps ) <-> ( A e. B <-> ch ) ) ) | 
						
							| 15 |  | df-clab |  |-  ( y e. { x | ps } <-> [ y / x ] ps ) | 
						
							| 16 | 15 | a1i |  |-  ( ph -> ( y e. { x | ps } <-> [ y / x ] ps ) ) | 
						
							| 17 | 1 14 16 | vtocld |  |-  ( ph -> ( A e. B <-> ch ) ) |