| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-elabd2ALT.ex | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | bj-elabd2ALT.eq | ⊢ ( 𝜑  →  𝐵  =  { 𝑥  ∣  𝜓 } ) | 
						
							| 3 |  | bj-elabd2ALT.is | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  =  𝐴 )  →  𝑦  =  𝐴 ) | 
						
							| 5 | 2 | eqcomd | ⊢ ( 𝜑  →  { 𝑥  ∣  𝜓 }  =  𝐵 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  =  𝐴 )  →  { 𝑥  ∣  𝜓 }  =  𝐵 ) | 
						
							| 7 | 4 6 | eleq12d | ⊢ ( ( 𝜑  ∧  𝑦  =  𝐴 )  →  ( 𝑦  ∈  { 𝑥  ∣  𝜓 }  ↔  𝐴  ∈  𝐵 ) ) | 
						
							| 8 |  | eqeq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  =  𝐴  ↔  𝑦  =  𝐴 ) ) | 
						
							| 9 | 8 | biimparc | ⊢ ( ( 𝑦  =  𝐴  ∧  𝑥  =  𝑦 )  →  𝑥  =  𝐴 ) | 
						
							| 10 | 9 | anim2i | ⊢ ( ( 𝜑  ∧  ( 𝑦  =  𝐴  ∧  𝑥  =  𝑦 ) )  →  ( 𝜑  ∧  𝑥  =  𝐴 ) ) | 
						
							| 11 | 10 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑦  =  𝐴 )  ∧  𝑥  =  𝑦 )  →  ( 𝜑  ∧  𝑥  =  𝐴 ) ) | 
						
							| 12 | 11 3 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  =  𝐴 )  ∧  𝑥  =  𝑦 )  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 13 | 12 | sbiedvw | ⊢ ( ( 𝜑  ∧  𝑦  =  𝐴 )  →  ( [ 𝑦  /  𝑥 ] 𝜓  ↔  𝜒 ) ) | 
						
							| 14 | 7 13 | bibi12d | ⊢ ( ( 𝜑  ∧  𝑦  =  𝐴 )  →  ( ( 𝑦  ∈  { 𝑥  ∣  𝜓 }  ↔  [ 𝑦  /  𝑥 ] 𝜓 )  ↔  ( 𝐴  ∈  𝐵  ↔  𝜒 ) ) ) | 
						
							| 15 |  | df-clab | ⊢ ( 𝑦  ∈  { 𝑥  ∣  𝜓 }  ↔  [ 𝑦  /  𝑥 ] 𝜓 ) | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  ( 𝑦  ∈  { 𝑥  ∣  𝜓 }  ↔  [ 𝑦  /  𝑥 ] 𝜓 ) ) | 
						
							| 17 | 1 14 16 | vtocld | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝐵  ↔  𝜒 ) ) |