| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elabd2.ex | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑉 )  | 
						
						
							| 2 | 
							
								
							 | 
							elabd2.eq | 
							⊢ ( 𝜑  →  𝐵  =  { 𝑥  ∣  𝜓 } )  | 
						
						
							| 3 | 
							
								
							 | 
							elabd2.is | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  ( 𝜓  ↔  𝜒 ) )  | 
						
						
							| 4 | 
							
								2
							 | 
							eleq2d | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  𝐵  ↔  𝐴  ∈  { 𝑥  ∣  𝜓 } ) )  | 
						
						
							| 5 | 
							
								
							 | 
							elab6g | 
							⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  ∈  { 𝑥  ∣  𝜓 }  ↔  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜓 ) ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							sylan9bb | 
							⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ∈  𝐵  ↔  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜓 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							elisset | 
							⊢ ( 𝐴  ∈  𝑉  →  ∃ 𝑥 𝑥  =  𝐴 )  | 
						
						
							| 8 | 
							
								3
							 | 
							pm5.74da | 
							⊢ ( 𝜑  →  ( ( 𝑥  =  𝐴  →  𝜓 )  ↔  ( 𝑥  =  𝐴  →  𝜒 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							albidv | 
							⊢ ( 𝜑  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜓 )  ↔  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜒 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							19.23v | 
							⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜒 )  ↔  ( ∃ 𝑥 𝑥  =  𝐴  →  𝜒 ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							bitrdi | 
							⊢ ( 𝜑  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜓 )  ↔  ( ∃ 𝑥 𝑥  =  𝐴  →  𝜒 ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							pm5.5 | 
							⊢ ( ∃ 𝑥 𝑥  =  𝐴  →  ( ( ∃ 𝑥 𝑥  =  𝐴  →  𝜒 )  ↔  𝜒 ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							sylan9bb | 
							⊢ ( ( 𝜑  ∧  ∃ 𝑥 𝑥  =  𝐴 )  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜓 )  ↔  𝜒 ) )  | 
						
						
							| 14 | 
							
								7 13
							 | 
							sylan2 | 
							⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑉 )  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜓 )  ↔  𝜒 ) )  | 
						
						
							| 15 | 
							
								6 14
							 | 
							bitrd | 
							⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ∈  𝐵  ↔  𝜒 ) )  | 
						
						
							| 16 | 
							
								1 15
							 | 
							mpdan | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  𝐵  ↔  𝜒 ) )  |