| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elabd2.ex |
|- ( ph -> A e. V ) |
| 2 |
|
elabd2.eq |
|- ( ph -> B = { x | ps } ) |
| 3 |
|
elabd2.is |
|- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
| 4 |
2
|
eleq2d |
|- ( ph -> ( A e. B <-> A e. { x | ps } ) ) |
| 5 |
|
elab6g |
|- ( A e. V -> ( A e. { x | ps } <-> A. x ( x = A -> ps ) ) ) |
| 6 |
4 5
|
sylan9bb |
|- ( ( ph /\ A e. V ) -> ( A e. B <-> A. x ( x = A -> ps ) ) ) |
| 7 |
|
elisset |
|- ( A e. V -> E. x x = A ) |
| 8 |
3
|
pm5.74da |
|- ( ph -> ( ( x = A -> ps ) <-> ( x = A -> ch ) ) ) |
| 9 |
8
|
albidv |
|- ( ph -> ( A. x ( x = A -> ps ) <-> A. x ( x = A -> ch ) ) ) |
| 10 |
|
19.23v |
|- ( A. x ( x = A -> ch ) <-> ( E. x x = A -> ch ) ) |
| 11 |
9 10
|
bitrdi |
|- ( ph -> ( A. x ( x = A -> ps ) <-> ( E. x x = A -> ch ) ) ) |
| 12 |
|
pm5.5 |
|- ( E. x x = A -> ( ( E. x x = A -> ch ) <-> ch ) ) |
| 13 |
11 12
|
sylan9bb |
|- ( ( ph /\ E. x x = A ) -> ( A. x ( x = A -> ps ) <-> ch ) ) |
| 14 |
7 13
|
sylan2 |
|- ( ( ph /\ A e. V ) -> ( A. x ( x = A -> ps ) <-> ch ) ) |
| 15 |
6 14
|
bitrd |
|- ( ( ph /\ A e. V ) -> ( A e. B <-> ch ) ) |
| 16 |
1 15
|
mpdan |
|- ( ph -> ( A e. B <-> ch ) ) |