Metamath Proof Explorer


Theorem elabd2

Description: Membership in a class abstraction, using implicit substitution. Deduction version of elab . (Contributed by Gino Giotto, 12-Oct-2024)

Ref Expression
Hypotheses elabd2.1
|- ( ph -> A e. V )
elabd2.2
|- ( ( ph /\ x = A ) -> ( ps <-> ch ) )
Assertion elabd2
|- ( ph -> ( A e. { x | ps } <-> ch ) )

Proof

Step Hyp Ref Expression
1 elabd2.1
 |-  ( ph -> A e. V )
2 elabd2.2
 |-  ( ( ph /\ x = A ) -> ( ps <-> ch ) )
3 elab6g
 |-  ( A e. V -> ( A e. { x | ps } <-> A. x ( x = A -> ps ) ) )
4 3 adantl
 |-  ( ( ph /\ A e. V ) -> ( A e. { x | ps } <-> A. x ( x = A -> ps ) ) )
5 elisset
 |-  ( A e. V -> E. x x = A )
6 2 pm5.74da
 |-  ( ph -> ( ( x = A -> ps ) <-> ( x = A -> ch ) ) )
7 6 albidv
 |-  ( ph -> ( A. x ( x = A -> ps ) <-> A. x ( x = A -> ch ) ) )
8 19.23v
 |-  ( A. x ( x = A -> ch ) <-> ( E. x x = A -> ch ) )
9 7 8 bitrdi
 |-  ( ph -> ( A. x ( x = A -> ps ) <-> ( E. x x = A -> ch ) ) )
10 pm5.5
 |-  ( E. x x = A -> ( ( E. x x = A -> ch ) <-> ch ) )
11 9 10 sylan9bb
 |-  ( ( ph /\ E. x x = A ) -> ( A. x ( x = A -> ps ) <-> ch ) )
12 5 11 sylan2
 |-  ( ( ph /\ A e. V ) -> ( A. x ( x = A -> ps ) <-> ch ) )
13 4 12 bitrd
 |-  ( ( ph /\ A e. V ) -> ( A e. { x | ps } <-> ch ) )
14 1 13 mpdan
 |-  ( ph -> ( A e. { x | ps } <-> ch ) )