Step |
Hyp |
Ref |
Expression |
1 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
2 |
|
rabss2 |
⊢ ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) → { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ { 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∣ 𝜑 } ) |
3 |
1 2
|
ax-mp |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ { 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∣ 𝜑 } |
4 |
|
orc |
⊢ ( 𝜑 → ( 𝜑 ∨ 𝜓 ) ) |
5 |
4
|
a1i |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → ( 𝜑 → ( 𝜑 ∨ 𝜓 ) ) ) |
6 |
5
|
ss2rabi |
⊢ { 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∣ 𝜑 } ⊆ { 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝜑 ∨ 𝜓 ) } |
7 |
3 6
|
sstri |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ { 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝜑 ∨ 𝜓 ) } |
8 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
9 |
|
rabss2 |
⊢ ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) → { 𝑥 ∈ 𝐵 ∣ 𝜓 } ⊆ { 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∣ 𝜓 } ) |
10 |
8 9
|
ax-mp |
⊢ { 𝑥 ∈ 𝐵 ∣ 𝜓 } ⊆ { 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∣ 𝜓 } |
11 |
|
olc |
⊢ ( 𝜓 → ( 𝜑 ∨ 𝜓 ) ) |
12 |
11
|
a1i |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → ( 𝜓 → ( 𝜑 ∨ 𝜓 ) ) ) |
13 |
12
|
ss2rabi |
⊢ { 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∣ 𝜓 } ⊆ { 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝜑 ∨ 𝜓 ) } |
14 |
10 13
|
sstri |
⊢ { 𝑥 ∈ 𝐵 ∣ 𝜓 } ⊆ { 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝜑 ∨ 𝜓 ) } |
15 |
7 14
|
unssi |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐵 ∣ 𝜓 } ) ⊆ { 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝜑 ∨ 𝜓 ) } |