Metamath Proof Explorer


Theorem bj-unrab

Description: Generalization of unrab . Equality need not hold. (Contributed by BJ, 21-Apr-2019)

Ref Expression
Assertion bj-unrab ( { 𝑥𝐴𝜑 } ∪ { 𝑥𝐵𝜓 } ) ⊆ { 𝑥 ∈ ( 𝐴𝐵 ) ∣ ( 𝜑𝜓 ) }

Proof

Step Hyp Ref Expression
1 ssun1 𝐴 ⊆ ( 𝐴𝐵 )
2 rabss2 ( 𝐴 ⊆ ( 𝐴𝐵 ) → { 𝑥𝐴𝜑 } ⊆ { 𝑥 ∈ ( 𝐴𝐵 ) ∣ 𝜑 } )
3 1 2 ax-mp { 𝑥𝐴𝜑 } ⊆ { 𝑥 ∈ ( 𝐴𝐵 ) ∣ 𝜑 }
4 orc ( 𝜑 → ( 𝜑𝜓 ) )
5 4 a1i ( 𝑥 ∈ ( 𝐴𝐵 ) → ( 𝜑 → ( 𝜑𝜓 ) ) )
6 5 ss2rabi { 𝑥 ∈ ( 𝐴𝐵 ) ∣ 𝜑 } ⊆ { 𝑥 ∈ ( 𝐴𝐵 ) ∣ ( 𝜑𝜓 ) }
7 3 6 sstri { 𝑥𝐴𝜑 } ⊆ { 𝑥 ∈ ( 𝐴𝐵 ) ∣ ( 𝜑𝜓 ) }
8 ssun2 𝐵 ⊆ ( 𝐴𝐵 )
9 rabss2 ( 𝐵 ⊆ ( 𝐴𝐵 ) → { 𝑥𝐵𝜓 } ⊆ { 𝑥 ∈ ( 𝐴𝐵 ) ∣ 𝜓 } )
10 8 9 ax-mp { 𝑥𝐵𝜓 } ⊆ { 𝑥 ∈ ( 𝐴𝐵 ) ∣ 𝜓 }
11 olc ( 𝜓 → ( 𝜑𝜓 ) )
12 11 a1i ( 𝑥 ∈ ( 𝐴𝐵 ) → ( 𝜓 → ( 𝜑𝜓 ) ) )
13 12 ss2rabi { 𝑥 ∈ ( 𝐴𝐵 ) ∣ 𝜓 } ⊆ { 𝑥 ∈ ( 𝐴𝐵 ) ∣ ( 𝜑𝜓 ) }
14 10 13 sstri { 𝑥𝐵𝜓 } ⊆ { 𝑥 ∈ ( 𝐴𝐵 ) ∣ ( 𝜑𝜓 ) }
15 7 14 unssi ( { 𝑥𝐴𝜑 } ∪ { 𝑥𝐵𝜓 } ) ⊆ { 𝑥 ∈ ( 𝐴𝐵 ) ∣ ( 𝜑𝜓 ) }