Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Set theory
Class abstractions
bj-unrab
Next ⟩
bj-inrab
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-unrab
Description:
Generalization of
unrab
. Equality need not hold.
(Contributed by
BJ
, 21-Apr-2019)
Ref
Expression
Assertion
bj-unrab
⊢
x
∈
A
|
φ
∪
x
∈
B
|
ψ
⊆
x
∈
A
∪
B
|
φ
∨
ψ
Proof
Step
Hyp
Ref
Expression
1
ssun1
⊢
A
⊆
A
∪
B
2
rabss2
⊢
A
⊆
A
∪
B
→
x
∈
A
|
φ
⊆
x
∈
A
∪
B
|
φ
3
1
2
ax-mp
⊢
x
∈
A
|
φ
⊆
x
∈
A
∪
B
|
φ
4
orc
⊢
φ
→
φ
∨
ψ
5
4
a1i
⊢
x
∈
A
∪
B
→
φ
→
φ
∨
ψ
6
5
ss2rabi
⊢
x
∈
A
∪
B
|
φ
⊆
x
∈
A
∪
B
|
φ
∨
ψ
7
3
6
sstri
⊢
x
∈
A
|
φ
⊆
x
∈
A
∪
B
|
φ
∨
ψ
8
ssun2
⊢
B
⊆
A
∪
B
9
rabss2
⊢
B
⊆
A
∪
B
→
x
∈
B
|
ψ
⊆
x
∈
A
∪
B
|
ψ
10
8
9
ax-mp
⊢
x
∈
B
|
ψ
⊆
x
∈
A
∪
B
|
ψ
11
olc
⊢
ψ
→
φ
∨
ψ
12
11
a1i
⊢
x
∈
A
∪
B
→
ψ
→
φ
∨
ψ
13
12
ss2rabi
⊢
x
∈
A
∪
B
|
ψ
⊆
x
∈
A
∪
B
|
φ
∨
ψ
14
10
13
sstri
⊢
x
∈
B
|
ψ
⊆
x
∈
A
∪
B
|
φ
∨
ψ
15
7
14
unssi
⊢
x
∈
A
|
φ
∪
x
∈
B
|
ψ
⊆
x
∈
A
∪
B
|
φ
∨
ψ