Metamath Proof Explorer


Theorem bj-unrab

Description: Generalization of unrab . Equality need not hold. (Contributed by BJ, 21-Apr-2019)

Ref Expression
Assertion bj-unrab x A | φ x B | ψ x A B | φ ψ

Proof

Step Hyp Ref Expression
1 ssun1 A A B
2 rabss2 A A B x A | φ x A B | φ
3 1 2 ax-mp x A | φ x A B | φ
4 orc φ φ ψ
5 4 a1i x A B φ φ ψ
6 5 ss2rabi x A B | φ x A B | φ ψ
7 3 6 sstri x A | φ x A B | φ ψ
8 ssun2 B A B
9 rabss2 B A B x B | ψ x A B | ψ
10 8 9 ax-mp x B | ψ x A B | ψ
11 olc ψ φ ψ
12 11 a1i x A B ψ φ ψ
13 12 ss2rabi x A B | ψ x A B | φ ψ
14 10 13 sstri x B | ψ x A B | φ ψ
15 7 14 unssi x A | φ x B | ψ x A B | φ ψ