Metamath Proof Explorer


Theorem bj-elpwgALT

Description: Alternate proof of elpwg . See comment for bj-velpwALT . (Contributed by BJ, 17-Jan-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-elpwgALT
|- ( A e. V -> ( A e. ~P B <-> A C_ B ) )

Proof

Step Hyp Ref Expression
1 eleq1
 |-  ( x = A -> ( x e. ~P B <-> A e. ~P B ) )
2 sseq1
 |-  ( x = A -> ( x C_ B <-> A C_ B ) )
3 bj-velpwALT
 |-  ( x e. ~P B <-> x C_ B )
4 1 2 3 vtoclbg
 |-  ( A e. V -> ( A e. ~P B <-> A C_ B ) )