Metamath Proof Explorer


Theorem bj-elpwgALT

Description: Alternate proof of elpwg . See comment for bj-velpwALT . (Contributed by BJ, 17-Jan-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-elpwgALT ( 𝐴𝑉 → ( 𝐴 ∈ 𝒫 𝐵𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝒫 𝐵𝐴 ∈ 𝒫 𝐵 ) )
2 sseq1 ( 𝑥 = 𝐴 → ( 𝑥𝐵𝐴𝐵 ) )
3 bj-velpwALT ( 𝑥 ∈ 𝒫 𝐵𝑥𝐵 )
4 1 2 3 vtoclbg ( 𝐴𝑉 → ( 𝐴 ∈ 𝒫 𝐵𝐴𝐵 ) )