Metamath Proof Explorer


Theorem bj-ideqgALT

Description: Alternate proof of bj-ideqg from brabga instead of bj-opelid itself proved from bj-opelidb . (Contributed by BJ, 27-Dec-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-ideqgALT
|- ( ( A i^i B ) e. V -> ( A _I B <-> A = B ) )

Proof

Step Hyp Ref Expression
1 reli
 |-  Rel _I
2 1 brrelex12i
 |-  ( A _I B -> ( A e. _V /\ B e. _V ) )
3 2 adantl
 |-  ( ( ( A i^i B ) e. V /\ A _I B ) -> ( A e. _V /\ B e. _V ) )
4 bj-inexeqex
 |-  ( ( ( A i^i B ) e. V /\ A = B ) -> ( A e. _V /\ B e. _V ) )
5 eqeq12
 |-  ( ( x = A /\ y = B ) -> ( x = y <-> A = B ) )
6 df-id
 |-  _I = { <. x , y >. | x = y }
7 5 6 brabga
 |-  ( ( A e. _V /\ B e. _V ) -> ( A _I B <-> A = B ) )
8 3 4 7 pm5.21nd
 |-  ( ( A i^i B ) e. V -> ( A _I B <-> A = B ) )