Metamath Proof Explorer


Theorem bj-inftyexpiinv

Description: Utility theorem for the inverse of inftyexpi . (Contributed by BJ, 22-Jun-2019) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.)

Ref Expression
Assertion bj-inftyexpiinv
|- ( A e. ( -u _pi (,] _pi ) -> ( 1st ` ( inftyexpi ` A ) ) = A )

Proof

Step Hyp Ref Expression
1 opeq1
 |-  ( x = A -> <. x , CC >. = <. A , CC >. )
2 df-bj-inftyexpi
 |-  inftyexpi = ( x e. ( -u _pi (,] _pi ) |-> <. x , CC >. )
3 opex
 |-  <. A , CC >. e. _V
4 1 2 3 fvmpt
 |-  ( A e. ( -u _pi (,] _pi ) -> ( inftyexpi ` A ) = <. A , CC >. )
5 4 fveq2d
 |-  ( A e. ( -u _pi (,] _pi ) -> ( 1st ` ( inftyexpi ` A ) ) = ( 1st ` <. A , CC >. ) )
6 cnex
 |-  CC e. _V
7 op1stg
 |-  ( ( A e. ( -u _pi (,] _pi ) /\ CC e. _V ) -> ( 1st ` <. A , CC >. ) = A )
8 6 7 mpan2
 |-  ( A e. ( -u _pi (,] _pi ) -> ( 1st ` <. A , CC >. ) = A )
9 5 8 eqtrd
 |-  ( A e. ( -u _pi (,] _pi ) -> ( 1st ` ( inftyexpi ` A ) ) = A )