Step |
Hyp |
Ref |
Expression |
1 |
|
opeq1 |
|- ( x = A -> <. x , CC >. = <. A , CC >. ) |
2 |
|
df-bj-inftyexpi |
|- inftyexpi = ( x e. ( -u _pi (,] _pi ) |-> <. x , CC >. ) |
3 |
|
opex |
|- <. A , CC >. e. _V |
4 |
1 2 3
|
fvmpt |
|- ( A e. ( -u _pi (,] _pi ) -> ( inftyexpi ` A ) = <. A , CC >. ) |
5 |
4
|
fveq2d |
|- ( A e. ( -u _pi (,] _pi ) -> ( 1st ` ( inftyexpi ` A ) ) = ( 1st ` <. A , CC >. ) ) |
6 |
|
cnex |
|- CC e. _V |
7 |
|
op1stg |
|- ( ( A e. ( -u _pi (,] _pi ) /\ CC e. _V ) -> ( 1st ` <. A , CC >. ) = A ) |
8 |
6 7
|
mpan2 |
|- ( A e. ( -u _pi (,] _pi ) -> ( 1st ` <. A , CC >. ) = A ) |
9 |
5 8
|
eqtrd |
|- ( A e. ( -u _pi (,] _pi ) -> ( 1st ` ( inftyexpi ` A ) ) = A ) |