| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( A = B -> ( inftyexpi ` A ) = ( inftyexpi ` B ) ) |
| 2 |
|
fveq2 |
|- ( ( inftyexpi ` A ) = ( inftyexpi ` B ) -> ( 1st ` ( inftyexpi ` A ) ) = ( 1st ` ( inftyexpi ` B ) ) ) |
| 3 |
|
bj-inftyexpiinv |
|- ( A e. ( -u _pi (,] _pi ) -> ( 1st ` ( inftyexpi ` A ) ) = A ) |
| 4 |
3
|
adantr |
|- ( ( A e. ( -u _pi (,] _pi ) /\ B e. ( -u _pi (,] _pi ) ) -> ( 1st ` ( inftyexpi ` A ) ) = A ) |
| 5 |
4
|
eqeq1d |
|- ( ( A e. ( -u _pi (,] _pi ) /\ B e. ( -u _pi (,] _pi ) ) -> ( ( 1st ` ( inftyexpi ` A ) ) = ( 1st ` ( inftyexpi ` B ) ) <-> A = ( 1st ` ( inftyexpi ` B ) ) ) ) |
| 6 |
5
|
biimpd |
|- ( ( A e. ( -u _pi (,] _pi ) /\ B e. ( -u _pi (,] _pi ) ) -> ( ( 1st ` ( inftyexpi ` A ) ) = ( 1st ` ( inftyexpi ` B ) ) -> A = ( 1st ` ( inftyexpi ` B ) ) ) ) |
| 7 |
|
bj-inftyexpiinv |
|- ( B e. ( -u _pi (,] _pi ) -> ( 1st ` ( inftyexpi ` B ) ) = B ) |
| 8 |
7
|
adantl |
|- ( ( A e. ( -u _pi (,] _pi ) /\ B e. ( -u _pi (,] _pi ) ) -> ( 1st ` ( inftyexpi ` B ) ) = B ) |
| 9 |
8
|
eqeq2d |
|- ( ( A e. ( -u _pi (,] _pi ) /\ B e. ( -u _pi (,] _pi ) ) -> ( A = ( 1st ` ( inftyexpi ` B ) ) <-> A = B ) ) |
| 10 |
6 9
|
sylibd |
|- ( ( A e. ( -u _pi (,] _pi ) /\ B e. ( -u _pi (,] _pi ) ) -> ( ( 1st ` ( inftyexpi ` A ) ) = ( 1st ` ( inftyexpi ` B ) ) -> A = B ) ) |
| 11 |
2 10
|
syl5 |
|- ( ( A e. ( -u _pi (,] _pi ) /\ B e. ( -u _pi (,] _pi ) ) -> ( ( inftyexpi ` A ) = ( inftyexpi ` B ) -> A = B ) ) |
| 12 |
1 11
|
impbid2 |
|- ( ( A e. ( -u _pi (,] _pi ) /\ B e. ( -u _pi (,] _pi ) ) -> ( A = B <-> ( inftyexpi ` A ) = ( inftyexpi ` B ) ) ) |