Metamath Proof Explorer


Theorem bj-inftyexpiinj

Description: Injectivity of the parameterization inftyexpi . Remark: a more conceptual proof would use bj-inftyexpiinv and the fact that a function with a retraction is injective. (Contributed by BJ, 22-Jun-2019)

Ref Expression
Assertion bj-inftyexpiinj A π π B π π A = B inftyexpi A = inftyexpi B

Proof

Step Hyp Ref Expression
1 fveq2 A = B inftyexpi A = inftyexpi B
2 fveq2 inftyexpi A = inftyexpi B 1 st inftyexpi A = 1 st inftyexpi B
3 bj-inftyexpiinv A π π 1 st inftyexpi A = A
4 3 adantr A π π B π π 1 st inftyexpi A = A
5 4 eqeq1d A π π B π π 1 st inftyexpi A = 1 st inftyexpi B A = 1 st inftyexpi B
6 5 biimpd A π π B π π 1 st inftyexpi A = 1 st inftyexpi B A = 1 st inftyexpi B
7 bj-inftyexpiinv B π π 1 st inftyexpi B = B
8 7 adantl A π π B π π 1 st inftyexpi B = B
9 8 eqeq2d A π π B π π A = 1 st inftyexpi B A = B
10 6 9 sylibd A π π B π π 1 st inftyexpi A = 1 st inftyexpi B A = B
11 2 10 syl5 A π π B π π inftyexpi A = inftyexpi B A = B
12 1 11 impbid2 A π π B π π A = B inftyexpi A = inftyexpi B