Metamath Proof Explorer


Theorem bj-inftyexpidisj

Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 22-Jun-2019) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.)

Ref Expression
Assertion bj-inftyexpidisj ¬ inftyexpi A

Proof

Step Hyp Ref Expression
1 opeq1 x = A x = A
2 df-bj-inftyexpi inftyexpi = x π π x
3 opex A V
4 1 2 3 fvmpt A π π inftyexpi A = A
5 opex x V
6 5 2 dmmpti dom inftyexpi = π π
7 4 6 eleq2s A dom inftyexpi inftyexpi A = A
8 cnex V
9 8 prid2 A
10 eqid A = A
11 10 olci A = A A = A
12 elopg A V V A A A = A A = A
13 8 12 mpan2 A V A A A = A A = A
14 11 13 mpbiri A V A A
15 en3lp ¬ A A A A
16 15 bj-imn3ani A A A ¬ A
17 9 14 16 sylancr A V ¬ A
18 opprc1 ¬ A V A =
19 0ncn ¬
20 eleq1 A = A
21 19 20 mtbiri A = ¬ A
22 18 21 syl ¬ A V ¬ A
23 17 22 pm2.61i ¬ A
24 eqcom inftyexpi A = A A = inftyexpi A
25 24 biimpi inftyexpi A = A A = inftyexpi A
26 25 eleq1d inftyexpi A = A A inftyexpi A
27 23 26 mtbii inftyexpi A = A ¬ inftyexpi A
28 7 27 syl A dom inftyexpi ¬ inftyexpi A
29 ndmfv ¬ A dom inftyexpi inftyexpi A =
30 29 eleq1d ¬ A dom inftyexpi inftyexpi A
31 19 30 mtbiri ¬ A dom inftyexpi ¬ inftyexpi A
32 28 31 pm2.61i ¬ inftyexpi A