Metamath Proof Explorer


Theorem bj-inftyexpidisj

Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 22-Jun-2019) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.)

Ref Expression
Assertion bj-inftyexpidisj ¬inftyexpiA

Proof

Step Hyp Ref Expression
1 opeq1 x=Ax=A
2 df-bj-inftyexpi inftyexpi=xππx
3 opex AV
4 1 2 3 fvmpt AππinftyexpiA=A
5 opex xV
6 5 2 dmmpti dominftyexpi=ππ
7 4 6 eleq2s AdominftyexpiinftyexpiA=A
8 cnex V
9 8 prid2 A
10 eqid A=A
11 10 olci A=AA=A
12 elopg AVVAAA=AA=A
13 8 12 mpan2 AVAAA=AA=A
14 11 13 mpbiri AVAA
15 en3lp ¬AAAA
16 15 bj-imn3ani AAA¬A
17 9 14 16 sylancr AV¬A
18 opprc1 ¬AVA=
19 0ncn ¬
20 eleq1 A=A
21 19 20 mtbiri A=¬A
22 18 21 syl ¬AV¬A
23 17 22 pm2.61i ¬A
24 eqcom inftyexpiA=AA=inftyexpiA
25 24 biimpi inftyexpiA=AA=inftyexpiA
26 25 eleq1d inftyexpiA=AAinftyexpiA
27 23 26 mtbii inftyexpiA=A¬inftyexpiA
28 7 27 syl Adominftyexpi¬inftyexpiA
29 ndmfv ¬AdominftyexpiinftyexpiA=
30 29 eleq1d ¬AdominftyexpiinftyexpiA
31 19 30 mtbiri ¬Adominftyexpi¬inftyexpiA
32 28 31 pm2.61i ¬inftyexpiA