Metamath Proof Explorer


Theorem en3lp

Description: No class has 3-cycle membership loops. This proof was automatically generated from the virtual deduction proof en3lpVD using a translation program. (Contributed by Alan Sare, 24-Oct-2011)

Ref Expression
Assertion en3lp ¬ABBCCA

Proof

Step Hyp Ref Expression
1 noel ¬C
2 eleq2 ABC=CABCC
3 1 2 mtbiri ABC=¬CABC
4 tpid3g CACABC
5 3 4 nsyl ABC=¬CA
6 5 intn3an3d ABC=¬ABBCCA
7 tpex ABCV
8 zfreg ABCVABCxABCxABC=
9 7 8 mpan ABCxABCxABC=
10 en3lplem2 ABBCCAxABCxABC
11 10 com12 xABCABBCCAxABC
12 11 necon2bd xABCxABC=¬ABBCCA
13 12 rexlimiv xABCxABC=¬ABBCCA
14 9 13 syl ABC¬ABBCCA
15 6 14 pm2.61ine ¬ABBCCA