Description: Lemma for en3lp . (Contributed by Alan Sare, 28-Oct-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | en3lplem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en3lplem1 | |
|
2 | en3lplem1 | |
|
3 | 2 | 3comr | |
4 | 3 | a1d | |
5 | tprot | |
|
6 | 5 | ineq2i | |
7 | 6 | neeq1i | |
8 | 7 | bicomi | |
9 | 4 8 | syl8ib | |
10 | jao | |
|
11 | 1 9 10 | sylsyld | |
12 | 11 | imp | |
13 | en3lplem1 | |
|
14 | 13 | 3coml | |
15 | 14 | a1d | |
16 | tprot | |
|
17 | 16 | ineq2i | |
18 | 17 | neeq1i | |
19 | 15 18 | syl8ib | |
20 | 19 | imp | |
21 | idd | |
|
22 | dftp2 | |
|
23 | 22 | eleq2i | |
24 | 21 23 | imbitrdi | |
25 | abid | |
|
26 | 24 25 | imbitrdi | |
27 | df-3or | |
|
28 | 26 27 | imbitrdi | |
29 | 28 | imp | |
30 | 12 20 29 | mpjaod | |
31 | 30 | ex | |