Metamath Proof Explorer


Theorem en3lplem2

Description: Lemma for en3lp . (Contributed by Alan Sare, 28-Oct-2011)

Ref Expression
Assertion en3lplem2 ABBCCAxABCxABC

Proof

Step Hyp Ref Expression
1 en3lplem1 ABBCCAx=AxABC
2 en3lplem1 BCCAABx=BxBCA
3 2 3comr ABBCCAx=BxBCA
4 3 a1d ABBCCAxABCx=BxBCA
5 tprot ABC=BCA
6 5 ineq2i xABC=xBCA
7 6 neeq1i xABCxBCA
8 7 bicomi xBCAxABC
9 4 8 syl8ib ABBCCAxABCx=BxABC
10 jao x=AxABCx=BxABCx=Ax=BxABC
11 1 9 10 sylsyld ABBCCAxABCx=Ax=BxABC
12 11 imp ABBCCAxABCx=Ax=BxABC
13 en3lplem1 CAABBCx=CxCAB
14 13 3coml ABBCCAx=CxCAB
15 14 a1d ABBCCAxABCx=CxCAB
16 tprot CAB=ABC
17 16 ineq2i xCAB=xABC
18 17 neeq1i xCABxABC
19 15 18 syl8ib ABBCCAxABCx=CxABC
20 19 imp ABBCCAxABCx=CxABC
21 idd ABBCCAxABCxABC
22 dftp2 ABC=x|x=Ax=Bx=C
23 22 eleq2i xABCxx|x=Ax=Bx=C
24 21 23 imbitrdi ABBCCAxABCxx|x=Ax=Bx=C
25 abid xx|x=Ax=Bx=Cx=Ax=Bx=C
26 24 25 imbitrdi ABBCCAxABCx=Ax=Bx=C
27 df-3or x=Ax=Bx=Cx=Ax=Bx=C
28 26 27 imbitrdi ABBCCAxABCx=Ax=Bx=C
29 28 imp ABBCCAxABCx=Ax=Bx=C
30 12 20 29 mpjaod ABBCCAxABCxABC
31 30 ex ABBCCAxABCxABC