Metamath Proof Explorer


Theorem en3lplem1

Description: Lemma for en3lp . (Contributed by Alan Sare, 28-Oct-2011)

Ref Expression
Assertion en3lplem1 ABBCCAx=AxABC

Proof

Step Hyp Ref Expression
1 simp3 ABBCCACA
2 eleq2 x=ACxCA
3 1 2 syl5ibrcom ABBCCAx=ACx
4 tpid3g CACABC
5 4 3ad2ant3 ABBCCACABC
6 inelcm CxCABCxABC
7 5 6 sylan2 CxABBCCAxABC
8 7 expcom ABBCCACxxABC
9 3 8 syld ABBCCAx=AxABC