Metamath Proof Explorer


Theorem bj-inftyexpidisj

Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 22-Jun-2019) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.)

Ref Expression
Assertion bj-inftyexpidisj ¬ ( +∞ei𝐴 ) ∈ ℂ

Proof

Step Hyp Ref Expression
1 opeq1 ( 𝑥 = 𝐴 → ⟨ 𝑥 , ℂ ⟩ = ⟨ 𝐴 , ℂ ⟩ )
2 df-bj-inftyexpi +∞ei = ( 𝑥 ∈ ( - π (,] π ) ↦ ⟨ 𝑥 , ℂ ⟩ )
3 opex 𝐴 , ℂ ⟩ ∈ V
4 1 2 3 fvmpt ( 𝐴 ∈ ( - π (,] π ) → ( +∞ei𝐴 ) = ⟨ 𝐴 , ℂ ⟩ )
5 opex 𝑥 , ℂ ⟩ ∈ V
6 5 2 dmmpti dom +∞ei = ( - π (,] π )
7 4 6 eleq2s ( 𝐴 ∈ dom +∞ei → ( +∞ei𝐴 ) = ⟨ 𝐴 , ℂ ⟩ )
8 cnex ℂ ∈ V
9 8 prid2 ℂ ∈ { 𝐴 , ℂ }
10 eqid { 𝐴 , ℂ } = { 𝐴 , ℂ }
11 10 olci ( { 𝐴 , ℂ } = { 𝐴 } ∨ { 𝐴 , ℂ } = { 𝐴 , ℂ } )
12 elopg ( ( 𝐴 ∈ V ∧ ℂ ∈ V ) → ( { 𝐴 , ℂ } ∈ ⟨ 𝐴 , ℂ ⟩ ↔ ( { 𝐴 , ℂ } = { 𝐴 } ∨ { 𝐴 , ℂ } = { 𝐴 , ℂ } ) ) )
13 8 12 mpan2 ( 𝐴 ∈ V → ( { 𝐴 , ℂ } ∈ ⟨ 𝐴 , ℂ ⟩ ↔ ( { 𝐴 , ℂ } = { 𝐴 } ∨ { 𝐴 , ℂ } = { 𝐴 , ℂ } ) ) )
14 11 13 mpbiri ( 𝐴 ∈ V → { 𝐴 , ℂ } ∈ ⟨ 𝐴 , ℂ ⟩ )
15 en3lp ¬ ( ℂ ∈ { 𝐴 , ℂ } ∧ { 𝐴 , ℂ } ∈ ⟨ 𝐴 , ℂ ⟩ ∧ ⟨ 𝐴 , ℂ ⟩ ∈ ℂ )
16 15 bj-imn3ani ( ( ℂ ∈ { 𝐴 , ℂ } ∧ { 𝐴 , ℂ } ∈ ⟨ 𝐴 , ℂ ⟩ ) → ¬ ⟨ 𝐴 , ℂ ⟩ ∈ ℂ )
17 9 14 16 sylancr ( 𝐴 ∈ V → ¬ ⟨ 𝐴 , ℂ ⟩ ∈ ℂ )
18 opprc1 ( ¬ 𝐴 ∈ V → ⟨ 𝐴 , ℂ ⟩ = ∅ )
19 0ncn ¬ ∅ ∈ ℂ
20 eleq1 ( ⟨ 𝐴 , ℂ ⟩ = ∅ → ( ⟨ 𝐴 , ℂ ⟩ ∈ ℂ ↔ ∅ ∈ ℂ ) )
21 19 20 mtbiri ( ⟨ 𝐴 , ℂ ⟩ = ∅ → ¬ ⟨ 𝐴 , ℂ ⟩ ∈ ℂ )
22 18 21 syl ( ¬ 𝐴 ∈ V → ¬ ⟨ 𝐴 , ℂ ⟩ ∈ ℂ )
23 17 22 pm2.61i ¬ ⟨ 𝐴 , ℂ ⟩ ∈ ℂ
24 eqcom ( ( +∞ei𝐴 ) = ⟨ 𝐴 , ℂ ⟩ ↔ ⟨ 𝐴 , ℂ ⟩ = ( +∞ei𝐴 ) )
25 24 biimpi ( ( +∞ei𝐴 ) = ⟨ 𝐴 , ℂ ⟩ → ⟨ 𝐴 , ℂ ⟩ = ( +∞ei𝐴 ) )
26 25 eleq1d ( ( +∞ei𝐴 ) = ⟨ 𝐴 , ℂ ⟩ → ( ⟨ 𝐴 , ℂ ⟩ ∈ ℂ ↔ ( +∞ei𝐴 ) ∈ ℂ ) )
27 23 26 mtbii ( ( +∞ei𝐴 ) = ⟨ 𝐴 , ℂ ⟩ → ¬ ( +∞ei𝐴 ) ∈ ℂ )
28 7 27 syl ( 𝐴 ∈ dom +∞ei → ¬ ( +∞ei𝐴 ) ∈ ℂ )
29 ndmfv ( ¬ 𝐴 ∈ dom +∞ei → ( +∞ei𝐴 ) = ∅ )
30 29 eleq1d ( ¬ 𝐴 ∈ dom +∞ei → ( ( +∞ei𝐴 ) ∈ ℂ ↔ ∅ ∈ ℂ ) )
31 19 30 mtbiri ( ¬ 𝐴 ∈ dom +∞ei → ¬ ( +∞ei𝐴 ) ∈ ℂ )
32 28 31 pm2.61i ¬ ( +∞ei𝐴 ) ∈ ℂ